
For Use with MATLAB®

Getting Started
Version 2

Model Predictive Control
Toolbox

Alberto Bemporad
Manfred Morari

N. Lawrence Ricker

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Getting Started with the Model Predictive Control Toolbox
© COPYRIGHT 2004-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.
Printing History: October 2004 First printing New for Version 2.1 (Release 14SP1)

March 2005 Online only Revised for Version 2.2 (Release 14SP2)

i

Contents

1
Introduction

What Is the Model Predictive Control Toolbox? 1-2

Using the Documentation . 1-4
Related Products . 1-5

Bibliography . 1-6

2
Building Models

Overview . 2-2
Plant Model . 2-2
Plant Inputs and Outputs . 2-3

Linear, Time Invariant (LTI) Models . 2-4
Transfer Function Format . 2-4
Zero/Pole/Gain Format . 2-5
State-Space Format . 2-5
LTI Object Properties . 2-7
Multiinput Multioutput (MIMO) Plants 2-11
LTI Model Characteristics . 2-13

System Identification Toolbox Models 2-14
System Identification Model Definition Example 2-14
Converting a System Identification Toolbox Model to an LTI
Object . 2-15
Step-Response Models . 2-17

Using Simulink to Develop LTI Models 2-19
Linearization Using Simulink Control Design 2-19
Linearization Using Simulink Functions 2-24

ii Contents

Bibliography . 2-27

3
The Design Tool

Introduction . 3-2
Starting the Design Tool . 3-2
Loading a Plant Model . 3-3
Navigation Using the Tree View . 3-7

Linear Simulations . 3-12
Defining Simulation Conditions . 3-12
Running a Simulation . 3-14
Open-Loop Simulations . 3-16

Changing Controller Settings . 3-20
Model and Horizons . 3-20
Weight Tuning . 3-22
Blocking . 3-27
Defining Manipulated Variable Constraints 3-30
Disturbance Modeling and Estimation 3-34

Defining Soft Output Constraints . 3-42

Robustness Testing . 3-46
Plant Model Perturbation . 3-46
Simulation Tests . 3-46

Plant Models with Delays . 3-49
Importing the Plant Model . 3-49
Specifying Controller Horizons . 3-50

Nonsquare Plants . 3-55
More Outputs Than Manipulated Variables 3-55
More Manipulated Variables Than Outputs 3-56

Nonlinear Plants . 3-57

iii

The MPC Controller Block . 3-57
Initiating the Controller Design . 3-58
Validating the Linearized Model . 3-61
Modifying the Linearized Model . 3-63
Linear Simulation Tests . 3-64
Nonlinear Simulation Tests . 3-66
Modifying the Controller Using the Design Tool 3-68
Exiting the Design Tool . 3-68

Saving Your Work . 3-69
Exporting a Controller . 3-69
Saving a Project . 3-70

Loading Your Saved Work . 3-72

4

Using Model Predictive Control Toolbox
Functions

Controller Definition . 4-2
Creating a Controller Object . 4-2
Viewing and Altering Controller Properties 4-3

Linear Simulations . 4-6
Using the sim Function . 4-6
Saving Calculated Results . 4-6
Simulation Options . 4-7

Simulations Involving Nonlinear Plants 4-8
A Nonlinear CSTR Application . 4-8
Example Code for Successive Linearization 4-9
CSTR Results and Discussion . 4-10

Analysis Tools . 4-14
Steady-State Gain Computation . 4-14
Controller Extraction . 4-14

Bibliography . 4-16

iv Contents

Index

1

Introduction

What Is the Model Predictive Control
Toolbox? (p. 1-2)

Compares the Model Predictive Control Toolbox to other
common system control approaches

Using the Documentation (p. 1-4) Describes the available documentation

Bibliography (p. 1-6) Suggestions for further reading

1 Introduction

1-2

What Is the Model Predictive Control Toolbox?
The Model Predictive Control Toolbox is a collection of software that helps you
design, analyze, and implement an advanced industrial automation algorithm.
Like other MATLAB® tools, it provides a convenient graphical user interface
(GUI) as well as a flexible command syntax that supports customization.

A Model Predictive Control Toolbox controller automates a target system (the
plant) by combining a prediction and a control strategy. An approximate plant
model provides the prediction. The control strategy compares predicted plant
signals to a set of objectives, then adjusts available actuators to achieve the
objectives while respecting the plant’s constraints.

The controller’s constraint-tolerance differentiates it from other optimal
control strategies (e.g., the Linear-Quadratic-Gaussian approach supported in
the Control System Toolbox). The impetus for this is industrial experience
suggesting that the drive for profitability often pushes the plant to one or more
constraints. The Model Predictive Control Toolbox controller considers such
factors explicitly, allowing it to allocate the available plant resources
intelligently as the system evolves over time.

The Model Predictive Control Toolbox uses the same powerful linear dynamic
modeling tools found in the Control System Toolbox and System Identification
Toolbox. You can employ transfer functions, state-space matrices, or a
combination. You can also include delays, which are a common feature of
industrial plants.

If you don’t have a model but can perform experiments, the System
Identification Toolbox provides methods to help you develop a data-based
model for use in the Model Predictive Control Toolbox.

If you’d rather use the Simulink® graphical tools to model your plant, the
Model Predictive Control Toolbox provides a special controller block for that
environment. For example, you can linearize a nonlinear Simulink model, use
the linearized model to build a Model Predictive Control Toolbox controller,
and evaluate its ability to control the nonlinear model. Once that is working
well, you can implement the control strategy in a real plant using Real Time
Workshop®.

For a list of books on predictive control theory and practice, see “Bibliography”
on page 1-6. In particular, Maciejowski [4] illustrates and extends Version 1.0

What Is the Model Predictive Control Toolbox?

1-3

of the Model Predictive Control Toolbox. (The command format used in [4] is
obsolete in Model Predictive Control Toolbox Version 2.0, however.)

1 Introduction

1-4

Using the Documentation
If you have limited experience with MATLAB or Model Predictive Control,
read this guide first. It shows how to

• Define your plant using the Control System Toolbox modeling tools (LTI
transfer function and state space models)

• Derive a linear plant model from a nonlinear Simulink representation

• Design Model Predictive Control for your plant using mpctool, the graphical
user interface (GUI), or special commands

• Simulate Model Predictive Control performance using mpctool, Simulink, or
commands

If you have experience with an earlier release of the Model Predictive
Control Toolbox, we advise you to read this book to familiarize yourself with
the many new features and the new command syntax (the earlier syntax is still
available, but the underlying code is no longer supported).

If you need more details, see the online documentation. To access it type

helpdesk

at the MATLAB prompt. When the help dialog window appears, select Model
Predictive Control Toolbox in the Contents pane. This displays a roadmap
with links to the available documentation components. Briefly, these are

• “Getting Started.” The online version of this manual.

• “MPC Problem Setup.” Mathematical details of the Model Predictive Control
Toolbox algorithm and user specifications required for controller design.

• “MPC Simulink Library.” Describes the Model Predictive Control Controller
Block and its use within Simulink.

• “Case-Study Examples.” Example Toolbox applications.

• “The Design Tool.” Reference manual for mpctool, the GUI.

• “Functions.” Reference manual describing each Model Predictive Control
Toolbox function (used for controller design and simulation in MATLAB
commands and scripts).

• “Blocks.” Reference manual describing the Model Predictive Control Toolbox
blocks (used for controller design and simulation in Simulink).

Using the Documentation

1-5

• “Object Reference.” Details of the controller object that represents a complete
controller design.

• “Release Notes.” Summarizes major features of this release, known
limitations, etc.

Related Products
The MathWorks provides other products that complement and enhance Model
Predictive Control Toolbox functionality. See
http://www.mathworks.com/products/mpc/ for more information.

1 Introduction

1-6

Bibliography
[1] Allgower, F., and A. Zheng, Nonlinear Model Predictive Control,
Springer-Verlag, 2000.

[2] Camacho, E. F., and C. Bordons, Model Predictive Control, Springer-Verlag,
1999.

[3] Kouvaritakis, B., and M. Cannon, Non-Linear Predictive Control: Theory &
Practice, IEE Publishing, 2001.

[4] Maciejowski, J. M., Predictive Control with Constraints, Pearson Education
POD, 2002.

[5] Prett, D., and C. Garcia, Fundamental Process Control, Butterworths, 1988.

[6] Rossiter, J. A., Model-Based Predictive Control: A Practical Approach, CRC
Press, 2003.

2

Building Models

Overview (p. 2-2) Describes the model and input/output signal
conventions used in the Model Predictive
Control Toolbox

Linear, Time Invariant (LTI) Models (p. 2-4) Defines transfer function, zero-pole, and
state-space models for use in the Model
Predictive Control Toolbox

System Identification Toolbox Models (p. 2-14) Imports System Identification Toolbox
(data-based) models for use in the Model
Predictive Control Toolbox.

Using Simulink to Develop LTI Models (p. 2-19) Obtains a linear approximation of a nonlinear
Simulink model.

2 Building Models

2-2

Overview
This section covers the following topics:

• “Plant Model” on page 2-2

• “Plant Inputs and Outputs” on page 2-3

Plant Model
The plant is the system (process or device) you intend to control. Figure 2-1
shows a schematic example.
.

Figure 2-1: Plant with Input and Output Signals

A Model Predictive Control Toolbox design requires a plant model, which
defines the mathematical relationship between the plant inputs and outputs.
The controller uses it to predict plant behavior.

The Model Predictive Control Toolbox requires the model to be linear, time
invariant (LTI). You can define such a model as follows:

• Create a transfer function, state space, or zero/pole/gain model using
methods provided by the Control System Toolbox

• Derive it from plant data using, e.g., methods provided by the System
Identification Toolbox

• Derive it by linearizing a Simulink model

This chapter illustrates each of these approaches. The Control System Toolbox,
Simulink, and the System Identification Toolbox documentation provides
additional examples and details.

Overview

2-3

Plant Inputs and Outputs

Inputs
The plant inputs are the independent variables affecting the plant. As shown
in Figure 2-1, there are three types:

Measured disturbances. The controller can’t adjust them, but uses them for
feedforward compensation.

Manipulated variables. The controller adjusts these in order to achieve its goals.

Unmeasured disturbances. These are independent inputs of which the controller
has no direct knowledge, and for which it must compensate

Outputs
The plant outputs are the dependent variables (outcomes) you wish to control
or monitor. As shown in Figure 2-1, there are two types:

Measured outputs. The controller uses these to estimate unmeasured quantities
and as feedback on the success of its adjustments.

Unmeasured outputs. The controller estimates these based on available
measurements and the plant model. The controller can also hold unmeasured
outputs at setpoints or within constraint boundaries.

You must specify the input and output types when designing the controller. See
“Input and Output Types” on page 2-9 for more details.

2 Building Models

2-4

Linear, Time Invariant (LTI) Models
The Model Predictive Control Toolbox supports the same LTI model formats as
the Control System Toolbox. You can use whichever is most convenient for your
application. It’s also easy to convert from one format to another.

The following sections describe the three model formats and the commands
used to construct them:

• “Transfer Function Format” on page 2-4

• “Zero/Pole/Gain Format” on page 2-5

• “State-Space Format” on page 2-5

• “LTI Object Properties” on page 2-7

• “Multiinput Multioutput (MIMO) Plants” on page 2-11

• “LTI Model Characteristics” on page 2-13

For more details, see the Control System Toolbox documentation.

Transfer Function Format
A transfer function (TF) relates a particular input/output pair. For example, if
u(t) is a plant input and y(t) is an output, the transfer function relating them
might be

This TF consists of a numerator polynomial, , a denominator polynomial,
, and a delay, which is 1.5 time units here. You can define G using

the Control System Toolbox tf function:

Gtf1 = tf([1 2], [1 1 10], 'OutputDelay', 1.5)

The Control System Toolbox builds and displays it as follows:

Transfer function:
 s + 2
exp(-1.5*s) * ------------
 s^2 + s + 10

Y s()
U s()
------------ G s() s 2+

s2 s 10+ +
---------------------------e 1.5s–= =

s 2+
s2 s 10+ +

Linear, Time Invariant (LTI) Models

2-5

Zero/Pole/Gain Format
Like the TF, the zero/pole/gain (ZPK) format relates an input/output pair. The
difference is that the ZPK numerator and denominator polynomials are
factored, as in

(zeros and/or poles are complex numbers in general).

You define the ZPK model by specifying the zero(s), pole(s), and gain as in

Gzpk1 = zpk(-0.45, [-0.3, -0.1+0.7*i, -0.1-0.7*i], 2.5)

State-Space Format

Chemical Reactor Example
The state-space format is convenient if your model is a set of LTI differential
and algebraic equations. For example, consider the following linearized model
of a continuous stirred-tank reactor (CSTR) involving an exothermic
(heat-generating) reaction [9]

where is the concentration of a key reactant, is the temperature in the
reactor, is the coolant temperature, is the reactant concentration in the
reactor feed, and and are constants. See the process schematic in
Figure 2-2. The primes (e.g.,) denote a deviation from the nominal
steady-state condition at which the model has been linearized.

G s() 2.5 s 0.45+
s 0.3+() s 0.1 0.7i+ +() s 0.1 0.7i–+()

---=

dC'A
dt

------------- a11C'A a12T' b11T'c b12C'Ai+ + +=

dT'
dt

--------- a21C'A a22T' b21T'c b22C'Ai+ + +=

CA T
Tc CAi

aij bij
C'A

2 Building Models

2-6

Figure 2-2: CSTR Schematic

Measurement of reactant concentrations is often difficult, if not impossible. Let
us assume that is a measured output, is an unmeasured output, is a
manipulated variable, and is an unmeasured disturbance.

State-Space Format
The model fits the general state-space format

where

, , ,

, , ,

The following code shows how to define such a model for some specific values
of the and constants:

A = [-0.0285 -0.0014
 -0.0371 -0.1476];
B = [-0.0850 0.0238
 0.0802 0.4462];

Tc

CAi

CAT

T CA Tc
CAi

dx
dt
------- Ax Bu+=

y Cx Du+=

x C'A
T'

= u
T'c

C'Ai

= y T'
C'A

=

A
a11 a12

a21 a22

= B
b11 b12

b21 b22

= C 0 1
1 0

= D 0 0
0 0

=

aij bij

Linear, Time Invariant (LTI) Models

2-7

C = [0 1
 1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

This defines a continuous-time state space model (no sampling period has been
specified, so it defaults to zero). You can also specify discrete-time state space
models and add delays to either type. See the Control System Toolbox
documentation for details.

LTI Object Properties
The ss function in the last line of the above code creates a state space model,
CSTR, which is an LTI object. The tf and zpk commands described in sections
“Transfer Function Format” on page 2-4 and “Zero/Pole/Gain Format” on
page 2-5 also create LTI objects. Such objects contain the model parameters as
well as optional properties.

LTI Properties for the CSTR Example
The following code sets some of the CSTR model’s optional properties:

CSTR.InputName = {'T_c', 'C_A_i'};
CSTR.OutputName = {'T', 'C_A'};
CSTR.StateName = {'C_A', 'T'};
CSTR.InputGroup.MV = 1;
CSTR.InputGroup.UD = 2;
CSTR.OutputGroup.MO = 1;
CSTR.OutputGroup.UO = 2;
CSTR

The first three lines specify labels for the input, output and state variables. The
next four specify the signal type for each input and output. The designations
MV, UD, MO, and UO mean manipulated variable, unmeasured disturbance,
measured output, and unmeasured output. (See “Plant Inputs and Outputs” on
page 2-3 for definitions of these terms.) For example, the code specifies that
input 2 of model CSTR is an unmeasured disturbance. The last line causes the
LTI object to be displayed, generating the following lines in the MATLAB
Command Window:

2 Building Models

2-8

a =
 C_A T
 C_A -0.0285 -0.0014
 T -0.0371 -0.1476

b =
 T_c C_Ai
 C_A -0.085 0.0238
 T 0.0802 0.4462

c =
 C_A T
 T 0 1
 C_A 1 0

d =
 T_c C_Ai
 T 0 0
 C_A 0 0

Input groups:
 Name Channels
 MV 1
 UD 2

Output groups:
 Name Channels
 MO 1
 UO 2

Continuous-time model

Input and Output Names
The optional InputName and OutputName properties affect the model displays,
as in the above example. The Model Predictive Control Toolbox also uses the
InputName and OutputName properties to label plots and tables. In that context,
the underscore character causes the next character to be displayed as a
subscript.

Linear, Time Invariant (LTI) Models

2-9

Input and Output Types

General Case. As mentioned in “Overview” on page 2-2, the Model Predictive
Control Toolbox supports three input types and two output types. In an Model
Predictive Control Toolbox design, designation of the input and output types
determines the controller dimensions and has other important consequences.

For example, suppose your plant structure were as follows:

The resulting controller would have four inputs (the three MOs and the MD)
and two outputs (the MVs). It would include feedforward compensation for the
measured disturbance, and would assume that you wanted the unmeasured
disturbances and outputs to be included as part of the regulator design.

If you didn’t want a particular signal to be treated as one of the above types,
you could do one of the following:

• Eliminate the signal before using the model in controller design.

• For an output, designate it as unmeasured, then set its weight to zero (see
“Output Weights” on page 3-24).

• For an input, designate it as an unmeasured disturbance, then define a
custom state estimator that ignores the input (see “Disturbance Modeling
and Estimation” on page 3-34).

Plant Inputs Plant Outputs

Two manipulated variables (MV) Three measured outputs (MO)

One measured disturbance (MD) Two unmeasured outputs (UO)

Two unmeasured disturbances (UD)

2 Building Models

2-10

Note By default, the Model Predictive Control Toolbox assumes that
unspecified plant inputs are manipulated variables, and unspecified outputs
are measured. Thus, if you didn’t specify signal types in the above example,
the controller would have four inputs (assuming all plant outputs were
measured) and five outputs (assuming all plant inputs were manipulated
variables).

Example. For model CSTR, the default Model Predictive Control Toolbox
assumptions are incorrect. You must set its InputGroup and OutputGroup
properties, as illustrated in the above code, or modify the default settings when
you load the model into the design tool.

The Model Predictive Control Toolbox provides a “helper function” called
setmpcsignals to make type definition more convenient. For example

CSTR = setmpcsignals(CSTR, 'UD', 2, 'UO', 2);

sets InputGroup and OutputGroup to the same values as in the previous
example. The CSTR display would then include the following lines:

Input groups:
 Name Channels
 Unmeasured 2
 Manipulated 1

Output groups:
 Name Channels
 Unmeasured 2
 Measured 1

Notice that setmpcsignals sets unspecified inputs to Manipulated and
unspecified outputs to Measured.

See the Control System Toolbox documentation for additional information on
LTI object properties.

Linear, Time Invariant (LTI) Models

2-11

Multiinput Multioutput (MIMO) Plants
Most Model Predictive Control Toolbox applications involve plants having
multiple inputs and outputs. Model CSTR described in “State-Space Format” on
page 2-5 is a MIMO plant, and the state space format extends naturally from
single-input single-output (SISO) to MIMO plants.

You can also use the tf and zpk functions to build a MIMO plant model. For
example, consider the following model of a distillation column [11], which has
been used in many advanced control studies:

Outputs y1 and y2 represent measured product purities. The control objective
is to hold each at specified setpoints. To do so, the controller manipulates
inputs u1 and u2, the flow rates of reflux and reboiler steam, respectively. Input
u3 is a measured feed flow rate disturbance.

The model consists of six transfer functions, one for each input/output pair.
Each transfer function is the first-order-plus-delay form often used by process
control engineers.

The following code shows how to define the distillation column model for use in
the Model Predictive Control Toolbox:

g11 = tf(12.8, [16.7 1], 'IOdelay', 1.0);
g12 = tf(-18.9, [21.0 1], 'IOdelay', 3.0);
g13 = tf(3.8, [14.9 1], 'IOdelay', 8.1);
g21 = tf(6.6, [10.9 1], 'IOdelay', 7.0);
g22 = tf(-19.4, [14.4 1], 'IOdelay', 3.0);
g23 = tf(4.9, [13.2 1], 'IOdelay', 3.4);
DC = [g11 g12 g13
 g21 g22 g23];
DC.InputName = {'Reflux Rate', 'Steam Rate', 'Feed Rate'};
DC.OutputName = {'Distillate Purity', 'Bottoms Purity'};
DC = setmpcsignals(DC, 'MD', 3)

The code defines the individual transfer functions, and then forms a matrix in
which each row contains the transfer functions for a particular output, and

y1

y2

12.8e s–

16.7s 1+
------------------------ 18.9e 3s––

21.0s 1+
------------------------- 3.8e 8.1s–

14.9s 1+

6.6e 7s–

10.9s 1+
------------------------ 19.4e 3s––

14.4s 1+
------------------------- 4.9e 3.4s–

13.2s 1+

u1

u2

u3

=

2 Building Models

2-12

each column corresponds to a particular input. The code also sets the signal
names and designates the third input as a measured disturbance. The
resulting LTI object display is as follows:

Transfer function from input "Reflux Rate" to output...
 12.8
 Distillate Purity: exp(-1*s) * ----------
 16.7 s + 1

 6.6
 Bottoms Purity: exp(-7*s) * ----------
 10.9 s + 1

Transfer function from input "Steam Rate" to output...
 -18.9
 Distillate Purity: exp(-3*s) * --------
 21 s + 1

 -19.4
 Bottoms Purity: exp(-3*s) * ----------
 14.4 s + 1

Transfer function from input "Feed Rate" to output...
 3.8
 Distillate Purity: exp(-8.1*s) * ----------
 14.9 s + 1

 4.9
 Bottoms Purity: exp(-3.4*s) * ----------
 13.2 s + 1
Input groups:
 Name Channels
 Measured 3
 Manipulated 1,2

Output groups:
 Name Channels
 Measured 1,2

Linear, Time Invariant (LTI) Models

2-13

LTI Model Characteristics
The Control System Toolbox provides functions for analyzing LTI models.
Some of the more commonly used are listed below. Type the example code at
the MATLAB prompt to see how they work for the CSTR example.

Example Intended Result

dcgain(CSTR) Calculate gain matrix for the CSTR model’s input/output
pairs.

impulse(CSTR) Graph CSTR model’s unit-impulse response.

ltiview(CSTR) Open the LTI Viewer with the CSTR model loaded. You
can then display model characteristics by making menu
selections.

pole(CSTR) Calculate CSTR model’s poles (to check stability, etc.).

step(CSTR) Graph CSTR model’s unit-step response.

zero(CSTR) Compute CSTR model’s transmission zeros.

2 Building Models

2-14

System Identification Toolbox Models
The System Identification Toolbox for MATLAB generates LTI models based
on plant input/output data. This section explains how to use such models in the
Model Predictive Control Toolbox:

• “System Identification Model Definition Example” on page 2-14

• “Converting a System Identification Toolbox Model to an LTI Object” on
page 2-15

• “Step-Response Models” on page 2-17

Note The System Identification Toolbox is an optional product. To determine
whether your installation includes it, type ver at the MATLAB prompt, and
look for “System Identification Toolbox” in the list of installed products.

System Identification Model Definition Example
To use the System Identification Toolbox, you first create an iddata object
containing measured values of your plant input and output signals. The
following example uses the System Identification Toolbox tutorial data set, a
temperature-control application. Load the data as follows:

load dryer2

This creates vectors u2 and y2 in your workspace. Vector u2 is a sequence of
1000 plant input values (electrical power), and y2 is the corresponding output
sequence (1000 temperature values). The sampling period is 0.08 second.

Create an iddata object called dry as follows:

dry = iddata(y2,u2,0.08);

Once the data has been loaded, use the System Identification Toolbox GUI or
commands to determine a model that best fits the data. For example, the
commands

dry.InputName = 'Power';
dry.OutputName = 'Temperature';
ze = detrend(dry(1:300));
m1 = pem(ze);

System Identification Toolbox Models

2-15

create a System Identification Toolbox model called m1 (see the System
Identification Toolbox documentation for a detailed explanation). If you type

whos m1

at the MATLAB prompt, the displayed result is

Name Size Bytes Class

 m1 4-D 22470 idss object

Notice that m1 is an idss object, one of seven possible System Identification
Toolbox model types (idgrey, idarx, idpoly, idproc, idss, idmodel, idfrd).
The pem function settings govern the type of model generated.

Like other System Identification Toolbox objects, m1 defines a model structure
and adjustable parameter values that best fit the data. It also contains System
Identification-Toolbox-specific information, such as the algorithm used to
estimate the parameters.

Converting a System Identification Toolbox Model
to an LTI Object
Once you’ve created a System Identification Toolbox model based on your data,
you must convert it to a standard LTI object prior to using it in the Model
Predictive Control Toolbox. The System Identification Toolbox provides a
special conversion function (ss).

Note An exception is the mpc function described in “Controller Definition” on
page 4-2, which can use System Identification Toolbox models directly.

Creating an LTI State-Space Model
Use the ss function to convert a System Identification Toolbox model object
(except the idfrd type) to a standard Control System Toolbox ss (state-space)
object, which is the form used internally by the Model Predictive Control
Toolbox. For example,

m1ss = ss(m1)

2 Building Models

2-16

converts m1, an System Identification Toolbox object, to m1ss, an LTI ss object,
and displays the following:

a =
 x1 x2 x3
 x1 0.9492 -0.2127 0.03679
 x2 0.2599 0.6523 0.2342
 x3 -0.04822 -0.6639 0.1393

b =
 Power v@Temperatur
 x1 -0.0005008 0.002613
 x2 -0.01335 -0.0002421
 x3 -0.06729 -0.004463

c =
 x1 x2 x3
 Temperature 14.09 -0.108 -0.08164

d =
 Power v@Temperatur
 Temperature 0 0.03968

Input groups:
 Name Channels
 Measured 1
 Noise 2

Sampling time: 0.08
Discrete-time model

We see that m1ss is a 3rd-order, discrete-time, state-space model with a
sampling time of 0.08, one output (“Temperature”), and two inputs (“Power” and
“v@Temperatur”).

Noise Inputs
The System Identification Toolbox automatically creates a noise input for each
output to model the impact of unmeasured disturbances and measurement

System Identification Toolbox Models

2-17

noise. In the above example, there is one output (Temperature). Its associated
noise input is v@Temperatur.

The System Identification Toolbox designates the noise inputs using the LTI
model’s InputGroup property. In the above example, channel 2 (v@Temperatur)
is classified as Noise, while channel 1 (Power) is Measured.

When you use such a model in the Model Predictive Control Toolbox, Noise
inputs will be treated as unmeasured disturbances, and Measured inputs will
be treated as manipulated variables. (See “Overview” on page 2-2 for
discussion of input types.) If these defaults are inappropriate, you must correct
them prior to using the model in a design. If you are using the design tool,
“Loading a Plant Model” on page 3-3 shows how to specify signal types. When
using commands, you need to set the models InputGroup and OutputGroup
properties, as illustrated in “LTI Object Properties” on page 2-7.

Note As discussed in “Disturbance Modeling and Estimation” on page 3-34,
unmeasured disturbance inputs influence the default controller design. A
System Identification Toolbox model of its Noise inputs might fit the given
data, but another experiment might yield a very different noise model. If a
controller designed using such a model seems to work well during setpoint
changes but is slow to eliminate disturbances or exhibits steady-state error,
try modifying the Model Predictive Control Toolbox disturbance modeling
settings.

Step-Response Models
Early predictive control implementations used finite step-response or finite
impulse-response models, often called nonparametric LTI models (see [6] for
example). Such models are easy to determine from plant data ([3], [7]) and they
have intuitive appeal.

The System Identification Toolbox includes tools for nonparametric model
identification. See its documentation for details.

For example, given the iddata object ze (defined in “System Identification
Model Definition Example” on page 2-14), you could type

m2 = step(ze);

2 Building Models

2-18

This identifies a finite step-response model, m2, which is a System
Identification Toolbox idarx object. Then typing

step(m2)

would display its unit-step response.

You could convert m2 to an LTI object for use in Model Predictive Control
Toolbox design (see “Creating an LTI State-Space Model” on page 2-15). The
disadvantage is that the model will be high-order, especially if your plant is
MIMO. For example, converting m2 generates a ss object of order 69.

High-order models can degrade certain Model Predictive Control Toolbox
operations, such as estimator design. As is the case with most recent predictive
control implementations (see [5] for example), the Model Predictive Control
Toolbox algorithms work best with a low-order parametric model. For example,
reference [10] describes a systematic approach that identifies a step-response
model as an intermediate step. The System Identification Toolbox
documentation also advocates this approach.

Using Simulink to Develop LTI Models

2-19

Using Simulink to Develop LTI Models
The LTI and System Identification Toolbox models discussed in the previous
sections are linear dynamic models. Most real systems are nonlinear. If you’d
like to simulate Model Predictive Control Toolbox control of a nonlinear
system, you must model the plant in Simulink.

Although a Model Predictive Control Toolbox controller can regulate a
nonlinear plant, the model used within the controller must be linear. In other
words, the controller employs a linear approximation of the nonlinear plant.
The accuracy of this approximation is a key issue affecting controller
performance.

This raises the question: how to obtain the approximation? The usual approach
is to linearize the nonlinear plant at a specified operating point. The Simulink
environment provides two ways to accomplish this:

• “Linearization Using Simulink Control Design” on page 2-19

• “Linearization Using Simulink Functions” on page 2-24

Linearization Using Simulink Control Design
Simulink Control Design is an optional product that supports model
linearization. To determine whether or not your license includes it, type ver at
the MATLAB prompt, and note whether or not “Simulink Control Design”
appears in the resulting product list.

The Simulink Control Design documentation includes extensive background
on linearization and several examples. You can linearize a Simulink model of
the plant alone, or a model that includes both the plant and its controller.

Figure 2-3 is a Simulink model of a continuous stirred-tank reactor (CSTR). It
is similar to the one in Figure 2-2, except that here the model is nonlinear and
includes an additional input: the feed temperature. This code is stored in the
Model Predictive Control Toolbox demo folder. You can open it by typing

CSTR_OL

at the MATLAB prompt.

As shown in Figure 2-3, the three inputs are being held at constant values: 10
kmol/m3 for the feed concentration, and 298.15 K for the feed and coolant
temperatures. Like the model of Figure 2-2, there are two state variables: the

2 Building Models

2-20

reactor temperature and the reactant concentration leaving the reactor. The
Simulink model defines their initial conditions to be 311.27 K and 8.57
kmol/m3, which are at steady state (or equlibrium condition) for the given
inputs. (If you run the simulation, the outputs will stay at their initial
conditions.)

Figure 2-3: Simulink Model of Nonlinear Chemical Reactor

Note “Nonlinear Plants” on page 3-57 shows how to linearize this model
when a Model Predictive Control block is included.

To linearize Figure 2-3, first designate the input and output signals to be
retained in the linear approximation. In general, you would choose signals that
will be connected to a controller. In Figure 2-3, all the signals have been
selected by adding linearization points, i.e., by right-clicking on a signal and
selecting either Input Point or Output Point from the Linearization Points
submenu.

Next, create a linearization project within the Simulink Control and
Estimation Tools Manager. From the Tools menu of the Simulink model, select
Control Design/Linear Analysis.

Figure 2-4 shows the resulting window for the CSTR example. The tool
automatically defines the Default Operating Point entry, in this case the
initial steady-state condition.

Using Simulink to Develop LTI Models

2-21

Figure 2-4: CSTR Model Linearization Using Simulink Control Design

Linearization at a Specified Operating Point
To calculate the linear approximation at a particular operating point, select
Linearizations in the tree (highlighting it as shown in Figure 2-4), select the
desired operating point on the Operating Points tab (if more than one have
been defined), and then click the Linearize Model button.

2 Building Models

2-22

Figure 2-4 shows the tool’s state after a linearized model has been created at
the default operating point. This model appears in the tree as the icon labeled
Model. The tree has been expanded to show its associated operating point,
which in this case is labeled Default Operating Point. You can select the
model in the tree, right-click, and then export it to MATLAB, making it
available for use in another tool.

Determining a New Operating Point
You are likely to need to modify a nonlinear model’s operating point. For
example, the above CSTR model has a poor reactant conversion. The feed
contains 10 kmol/m3, and the residual is 8.57 kmol/m3, so only 1.43 has reacted
(14.3% conversion).

Suppose that you’d like to react 80% (i.e., a residual concentration of 2
kmol/m3). To increase the conversion you need to increase the CSTR
temperature, but how much? Also, to change the CSTR temperature you need
to change the coolant temperature, but how much?

One approach would be to change the coolant temperature, run a simulation of
sufficient duration to reach a new steady state, check the final residual
concentration, and repeat until you achieve the desired 2.0 kmol/m3 residual.
This is tedious and essentially impossible in a more complex situation where
you are trying to match several targets simultaneously.

Simulink Control Design can search for a new steady state operating point that
achieves the desired conversion. First, you must modify the model so Simulink
can change the coolant temperature. One way is to represent the coolant
temperature with an Inport block, as shown below (compare to Figure 2-3,
which uses a Constant block.

Using Simulink to Develop LTI Models

2-23

Save this modified model under a new name. Then from the Tools menu, select
Control Design/Linear Analysis as before. If the Control and Estimation
Tools Manager window containing CSTR_OL is still open (as shown in
Figure 2-4), a new linearization project will be inserted. Otherwise, the window
will open with CSTR_OL as a new project.

As before, it will contain a default operating point, which is as before except
that the coolant temperature appears as an input and defaults to zero. To
modify this, select Operating Points in the tree, and select the Create
Operating Points tab. On this panel, select the States tab and set the check
boxes as shown below.

Also set the desired value of the second state (the residual concentration) to 2,
as shown. You are asking for a new operating point in which one state is
specified (known) and both are at steady state. The reactor temperature value
(311.267) is an initial guess, and the tool uses optimization to find the value
that satisfies all the specifications.

Next, click the Inputs tab and verify that the coolant temperature input is not
specified (i.e., its Known check box is not selected) as shown below.

The value is an initial guess that will be changed. You can set it to 298 to help
the tool converge its trial-and-error calculations. (The default guess of 0 should

2 Building Models

2-24

also work in this case, but in general you might have to supply a better guess
to aid convergence.)

Finally, click the Compute Operating Point button at the panel bottom. A
calculation progress panel shows the specification error at each iteration.
When it’s finished, you should see the line, “Operating point specifications were
successfully met” and a new operating point should appear in the tree. Click on
this and observe that the required reactor temperature is 373.13 K, and the
required coolant temperature is 305.20 K.

Let’s calculate a new linearized model at this condition, comparing it to that
obtained at the original point. Suppose you exported the original model as
Model1, and the other as Model2. The following command would compare their
step responses:

step(Model1, Model2)

You should see some significant quantitative and qualitative differences,
especially in the response to a change in feed concentration. At the original
low-conversion state, increasing the feed concentration increases both the
reactor temperature and the residual concentration. At high conversion,
however, the reaction is more sensitive to temperature changes. Increasing the
feed concentration causes an initial rise in the residual concentration, but the
increased temperature accelerates the reaction rate and the residual
concentration goes below its initial value. Thus, if one were trying to control
conversion by adjusting the feed concentration, a model-based controller
designed for low conversion would be certain to fail at high conversion.

Linearization Using Simulink Functions
Another approach is to linearize the model using standard Simulink functions.
This is more restrictive: you cannot perform open loop analysis of the Simulink
model, and the signals to be retained in the linearized model must be connected
to an inport or outport block. On the other hand, Simulink Control Design is
not needed.

The diagram below shows a modification of Figure 2-3 with three inport blocks
designating the input signals (on the left-hand sided of the model) and two
outports designating the outputs (on the right).

Using Simulink to Develop LTI Models

2-25

Suppose this model were named CSTR_INOUT. The linmod command linearizes
it as follows:

[a,b,c,d]=linmod('CSTR_INOUT')

a =

 -0.2505 1.9897
 -0.0880 -1.1669

b =

 0 1.0000 0.3000
 1.0000 0 0

c =

 1.0000 0
 0 1.0000

d =

 0 0 0
 0 0 0

2 Building Models

2-26

By default, linmod uses the initial conditions defined in the model as the
operating point. Options allow you to specify an operating point. The command
outputs are the standard state-space matrices defining an LTI model. You can
use these to create an LTI model as follows:

cstr = ss(a,b,c,d)

Bibliography

2-27

Bibliography
[1] Allgower, F., and A. Zheng, Nonlinear Model Predictive Control,
Springer-Verlag, 2000.

[2] Camacho, E. F., and C. Bordons, Model Predictive Control, Springer-Verlag,
1999.

[3] Cutler, C., and F. Yocum, “Experience with the DMC inverse for
identification,” Chemical Process Control — CPC IV (Y. Arkun and W. H. Ray,
eds.), CACHE, 1991.

[4] Kouvaritakis, B., and M. Cannon, Non-Linear Predictive Control: Theory &
Practice, IEE Publishing, 2001.

[5] Maciejowski, J. M., Predictive Control with Constraints, Pearson Education
POD, 2002.

[6] Prett, D., and C. Garcia, Fundamental Process Control, Butterworths, 1988.

[7] Ricker, N. L., “The use of bias least-squares estimators for parameters in
discrete-time pulse response models,” Ind. Eng. Chem. Res., Vol. 27, pp. 343,
1988.

[8] Rossiter, J. A., Model-Based Predictive Control: A Practical Approach, CRC
Press, 2003.

[9] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and
Control, 2nd Edition, Wiley, 2004, pp. 34-36 and 94-95.

[10] Wang, L., P. Gawthrop, C. Chessari, T. Podsiadly, and A. Giles, “Indirect
approach to continuous time system identification of food extruder,” J. Process
Control, Vol. 14, Number 6, pp. 603-615, 2004.

[11] Wood, R. K., and M. W. Berry, Chem. Eng. Sci., Vol. 28, pp. 1707, 1973.

2 Building Models

2-28

3

The Design Tool

Introduction (p. 3-2) Opens the design tool and navigates its views

Linear Simulations (p. 3-12) Defines and runs simulation scenarios

Changing Controller Settings (p. 3-20) Modifies the default controller settings for improved
close-loop performance

Defining Soft Output Constraints (p. 3-42) Includes hard and soft output constraints in your
controller specifications

Robustness Testing (p. 3-46) Tests sensitivity to prediction errors

Plant Models with Delays (p. 3-49) Defines controller settings for plants having delays

Nonsquare Plants (p. 3-55) Designs controllers for plants with unequal numbers of
manipulated variables and outputs

Nonlinear Plants (p. 3-57) Works with Simulink models – linearization and nominal
conditions

Saving Your Work (p. 3-69) Exports your controller design and saves your design
specifications

Loading Your Saved Work (p. 3-72) Imports a controller and loads saved design specifications

3 The Design Tool

3-2

Introduction
The Model Predictive Control Toolbox design tool is a graphical user interface
for controller design. It operates under the Control and Estimation Tools
Manager. (For another use of the Control and Estimation Tools Manager, see
“Linearization Using Simulink Control Design” on page 2-19.)

This section covers the following topics:

• “Starting the Design Tool” on page 3-2

• “Loading a Plant Model” on page 3-3

• “Signal Property Specifications” on page 3-6

Starting the Design Tool
Start the design tool by typing the MATLAB command

mpctool

The Control and Estimation Tools Manager window appears, as shown
below. By default, it contains a Model Predictive Control Toolbox task called
MPCdesign (listed in the tree view on the left side of the window), which is
selected, causing the view shown on the right to appear.

Introduction

3-3

Figure 3-1: Model Predictive Control Toolbox Design Tool Initial View

Loading a Plant Model
The first step in the design is to load a plant model. Its dimensions and signal
characteristics set the context for the remaining steps. You can either load the
model directly, as described in this section, or indirectly by importing a
controller or a saved design (see “Loading Your Saved Work” on page 3-72).

3 The Design Tool

3-4

The following example uses the CSTR model described in “State-Space Format”
on page 2-5. Verify that the LTI object CSTR is in your MATLAB workspace (if
necessary, create the model as explained in “State-Space Format” on page 2-5,
and set its label and signal type properties as explained in “LTI Object
Properties” on page 2-7).

Model Import Dialog
Click the Import Plant button in the design tool’s initial view (see Figure 3-1).
The Plant Model Importer dialog appears.

Figure 3-2: Plant Model Importer Dialog

The Import from MATLAB Workspace radio button should be selected by
default, as shown. The dialog section labeled Items in your Workspace lists
your LTI models. If CSTR doesn’t appear, define it as discussed above, then
reactivate the import dialog.

Once CSTR appears, select it. The dialog section labeled Properties then
displays the number of inputs and outputs, their names and signal types, etc.

Introduction

3-5

Click the Import button. This loads CSTR into the design tool. Then click the
Close button (otherwise the dialog remains visible in case you want to import
another model). The design tool should appear as in Figure 3-3.

Figure 3-3: The Model Predictive Control Toolbox Design Tool’s Signal Definition View

3 The Design Tool

3-6

Signal Property Specifications
The figure’s graphical display indicates that you’ve imported a plant model by
showing the number of inputs and outputs, and the number in each subclass:
measured disturbance, manipulated variables, etc.). Also, the tables labeled
Input signal properties and Output signal properties fill with data:

• The Name entries are from the CSTR model’s InputName and OutputName
properties (the design tool assigns defaults if necessary). You can edit these
at any time.

• The Type entries are from the CSTR model’s InputGroup and OutputGroup
properties. (The design tool defaults all unspecified inputs to manipulated
variables and all unspecified outputs to measured.)

Note Once you leave this view, if you subsequently change a signal type, you
will have to restart the design. Be sure the signal types are correct at the
beginning.

• The Description and Unit entries are optional. You can enter the values
shown in Figure 3-3 manually. As you will see, the design tool uses them to
label plots and other tables.

• The Nominal entries are initial conditions for simulations. The design tool
default is 0.0.

Introduction

3-7

Navigation Using the Tree View
The tree in the left-hand frame of Figure 3-3 shows that the default
MPCdesign node (see Figure 3-1) has been renamed CSTRcontrol by clicking
on the name, waiting for the usual edit box to appear, typing the new name,
and pressing Enter to finalize the choice.

Figure 3-3 also shows three new nodes below CSTRcontrol. These activate
once you’ve imported a plant model (or controller).

In general, clicking a node displays a view supporting a particular design
activity.

The Project View (Signal Properties Tables)
For example, clicking the project node (CSTRcontrol in Figure 3-3) allows you
to review and edit the signal properties tables.

3 The Design Tool

3-8

Listing Your Plant Models
Select the Plant models node to list the plant models you’ve imported, as
shown in Figure 3-4. (Each model name is editable.) The Model details section
displays properties of the selected model. There is also a space to enter notes
describing the model’s special features. Buttons allow you to import a new
model or delete one you no longer need.

Figure 3-4: Plant Models View with CSTR Model Selected

Introduction

3-9

Viewing Your Controllers
Next, select Controllers. The view shown in Figure 3-5 appears. A + sign to the
left of Controllers indicates that it contains subnodes. You can click on a + sign
to expand the tree (as shown in Figure 3-5, where the + sign has changed to a
– sign).

Figure 3-5: Controllers View

3 The Design Tool

3-10

The table at the top of Figure 3-5 lists all the controllers you’ve defined. The
design tool automatically creates a controller containing the Model Predictive
Control Toolbox defaults, naming it MPC1. It is a subnode of Controllers.

Note If you define additional controllers, they will appear here. For example,
you might want to test several options, saving each as a separate controller,
making it easy to switch from one to another during testing.

The table Controllers defined in this project allows you to edit the controller
name and gives you quick access to three important design parameters: Plant
Model, Control Interval, and Prediction Horizon. All are editable, but leave
them at their default values for this example.

The buttons shown in Figure 3-5 let you do the following:

• Import a controller designed previously and stored either in your workspace
or in a MAT-file

• Export the selected controller to your workspace

• Create a new controller initialized to the Model Predictive Control Toolbox
defaults

• Copy the selected controller, creating a duplicate you can modify

• Delete the selected controller

You can also right-click on the Controllers node to access menu options New,
Import, and Export, or on one of its subnodes to access menu options Copy,
Rename, Export, and Delete.

Select the MPC1 node to display the Model Predictive Control Toolbox default
controller settings. (“Changing Controller Settings” on page 3-20 covers this
view in detail).

Viewing Simulation Scenarios
A scenario is a set of conditions defining a simulation. The design tool creates
a default scenario and names it Scenario1. To view it, click on the + symbol
next to the Scenarios node, and select the Scenario1 subnode. You should see
a view like that shown in Figure 3-6.

Introduction

3-11

Figure 3-6: Scenario1 Simulation Parameters

Whenever you select the Scenarios node, you see a table summarizing your
current scenarios (not shown). Its function is similar to the Controllers view
described above.

3 The Design Tool

3-12

Linear Simulations
You will usually want to test your controller in simulations. The Model
Predictive Control Toolbox design tool makes it easy to run closed-loop
simulations involving a Model Predictive Control Toolbox controller and an
LTI plant model. This plant can differ from that used in the controller design,
allowing you to test your controller’s sensitivity to prediction errors (see
“Robustness Testing” on page 3-46).

This section covers the following topics:

• “Defining Simulation Conditions” on page 3-12

• “Running a Simulation” on page 3-14

• “Open-Loop Simulations” on page 3-16

Defining Simulation Conditions
To define simulation conditions, select an existing scenario node or create a
new one, and then edit its tabular fields to define your conditions.

Figure 3-7 shows the result of renaming the default Scenario1 node to
T Setpoint and editing its default conditions. The required editing steps are as
follows:

• Increase Duration from 10 to 30

• Locate the tabular data defining the reactor temperature setpoint (first row
of the upper table in Figure 3-7)

- Click the Type table cell and select Step from the list of choices

- Change Size from 1.0 to 2

- Change Time from 1.0 to 5

Note The Control Interval is a property of the controller being used (MPC1 in
this case). To change it, select the controller node in the tree, and then edit the
value on the Model and Horizons tab (see “Model and Horizons” on
page 3-20). Such a change would apply to all simulations involving that
controller.

Linear Simulations

3-13

Figure 3-7: CSTR Temperature Setpoint Change Scenario

Simulation button

3 The Design Tool

3-14

Running a Simulation
To run a simulation, do one of the following:

• Select the scenario you want to run, and click its Simulate button (see this
button near the bottom of Figure 3-7)

• Click the toolbar’s Simulation button, the triangular icon shown on the top
left of Figure 3-7.

The toolbar method runs the current scenario, i.e., the one most recently
selected or modified.

Try running the T Setpoint scenario. This should generate the two response
plot windows shown in Figure 3-8 and Figure 3-9.

Figure 3-8: Plant Outputs for T Setpoint Scenario

Linear Simulations

3-15

Figure 3-9: Plant Inputs for T Setpoint Scenario

Figure 3-8 shows that the reactor temperature setpoint increases suddenly by
2 degrees at t = 5, as you specified when defining the scenario in the previous
section. Unfortunately, the temperature does not track the setpoint very well,
and there is a persistent error of about 1.6 degrees at the end of the simulation.

Also, the controller requests a sudden jump in the coolant temperature (see
upper graph in Figure 3-9), which might be difficult to deliver in practice. (The
lower graph in Figure 3-9 shows that the feed concentration, CAi, remains
constant, as specified in the scenario.)

See “Changing Controller Settings” on page 3-20 for ways to overcome these
deficiencies.

3 The Design Tool

3-16

Note Figure 3-8 has data markers. To add these, left-click on the curve to
create the data marker. Drag a marker to relocate it. Left-click in a graph’s
white space to erase its markers. For more information on data markers, see
the Control System Toolbox documentation.

Open-Loop Simulations
By default, scenarios are closed loop, i.e., an active controller adjusts the
manipulated variables entering your plant based on feedback from the plant
outputs. You can also run open-loop simulations that test the plant model
alone.

For example, you might want to check your plant model’s response to a
particular input without opening another tool. You might also want to display
unmeasured disturbance signals before using them in a closed-loop simulation.

To see how this works, create a new scenario by right-clicking on the
T Setpoint node in the tree, and selecting Copy Scenario in the resulting
menu. Rename the copy OpenLoop.

Select OpenLoop in the tree. On its scenario view, change Duration to 100,
and turn off (clear) Close loops.

Open-loop simulations ignore the Setpoints table settings, so there’s no need
to modify them.

If CSTR had a measured disturbance input, the panel would contain another
table allowing you to specify it.

For this example, focus on the Unmeasured disturbances table. Configure it
as shown below.

Linear Simulations

3-17

The C_A_i input’s nominal value is 0.0 (see Figure 3-3), so the above models a
sudden increase to 1 at the beginning of the simulation. The following is an
equivalent setup using the Step type.

Using one of these, simulate the scenario (click its Simulate button). The
output response plot should be as shown below.

This is the CSTR model’s open-loop response to a unit step in the CAi
disturbance input.

You could also set up the table as shown below.

3 The Design Tool

3-18

This simulation would display the open-loop response to a unit step in the Tc
manipulated variable input (try it).

Finally, set it up as follows.

This adds a pulse to the T output. The pulse begins at time t = 10, and lasts 20
time units. Its height is 0.95 degrees.

Run the simulation. The output response plot displays the pulse (see
Figure 3-10). In this case, the T output’s nominal value is zero, so you only see
the pulse. (If the T output had a nonzero nominal value, the pulse would add to
that.)

Linear Simulations

3-19

Figure 3-10: Response Plot Showing Open Loop Pulse Disturbance

If you were to run a closed-loop simulation with this same T disturbance, the
controller would attempt to hold T at its setpoint, and the result would differ
from that shown in Figure 3-10.

3 The Design Tool

3-20

Changing Controller Settings
The simulations shown in Figure 3-8 and Figure 3-9 used the default controller
settings. These often work well, but the CSTR application is an exception. The
following discussion covers the main controller options in more detail, and
shows how to tune a controller for better performance.

This section covers the following topics:

• “Model and Horizons” on page 3-20

• “Weight Tuning” on page 3-22

• “Blocking” on page 3-27

• “Defining Manipulated Variable Constraints” on page 3-30

• “Disturbance Modeling and Estimation” on page 3-34

Model and Horizons
Select your MPC1 controller in the tree. The view shown in Figure 3-11 should
appear. If necessary, select the Model and Horizons tab to bring it to the front.
This tab contains the following controller options:

• Plant model specifies the LTI model to be used for controller predictions.

• Control interval sets the elapsed time between successive adjustments of
the controller’s manipulated variables.

• Prediction horizon is the number of control intervals over which the
outputs are to be optimized.

• Control horizon sets the number of control intervals over which the
manipulated variables are to be optimized.

• Selecting the Blocking option gives you more control over the way in which
the controller’s moves are allocated.

Leave all of the Model and Horizons tab settings at their default values for
now.

Changing Controller Settings

3-21

Figure 3-11: Controller Options — Models and Horizons Tab

3 The Design Tool

3-22

Weight Tuning
Select the Weight Tuning tab. The view shown in Figure 3-12 appears.

Figure 3-12: Controller Options — Weight Tuning Tab

Make the following changes:

• In the Input weights table, change the coolant temperature’s Rate weight
from the default 0.1 to 0.3.

Changing Controller Settings

3-23

• In the Output weights section, change the reactant concentration’s Weight
(last entry in second row) from the default 1.0 to 0.

Test these changes using the T Setpoint scenario (click the toolbar’s
Simulation button). Figure 3-13 shows that the CSTR temperature now tracks
the setpoint change smoothly, reaching the new value in about 10 time units
with no overshoot.

Figure 3-13: Improved Setpoint Tracking for CSTR Temperature

On the other hand, the reactant concentration, CA, exhibits a larger deviation
from its setpoint, which is being held constant at zero (compare to Figure 3-8,
where the final deviation is about a factor of 4 smaller).

This behavior reflects an unavoidable trade-off. The controller has only one
adjustment at its disposal: the coolant temperature. Therefore, it can’t satisfy
setpoints on both outputs.

3 The Design Tool

3-24

Output Weights
The output weights let you dictate the accuracy with which each output must
track its setpoint. Specifically, the controller predicts deviations for each
output over the prediction horizon. It multiplies each deviation by the output’s
weight value, and then computes the weighted sum of squared deviations,

, as follows

where k is the current sampling interval, k+i is a future sampling interval
(within the prediction horizon), P is the number of control intervals in the
prediction horizon, ny is the number of plant outputs, is the weight for
output j, and the term is a predicted deviation for output
j at interval k+1.

The weights must be zero or positive. If a particular weight is large, deviations
for that output dominate . One of the controller’s objectives is to
minimize . Thus, a large weight on a particular output causes the
controller to minimize deviations in that output (relative to outputs having
smaller weights).

For example, the default values used to produce Figure 3-8 specify equal
weights on each output, so the controller is trying to eliminate deviations in
both, which is impossible. On the other hand, the design of Figure 3-13 uses a
weight of zero on the second output, so it is able to eliminate deviations in the
first output.

Note The second output is unmeasured. Its predictions rely on the plant
model and the temperature measurements. If the model were reliable, we
could hold the predicted concentration at a setpoint, allowing deviations in the
reactor temperature instead. In practice, it would be more common to control
the temperature as done here, using the predicted reactant concentration as
an auxiliary indicator.

You might expect equal output weights to result in equal output deviations at
steady state. Figure 3-8 shows that this is not the case. The reason is that the
controller is trying to satisfy several additional objectives simultaneously.

Sy k()

Sy k() wy
j rj k i+() yj k i+()–[]

⎩ ⎭
⎨ ⎬
⎧ ⎫

2

j 1=

ny

∑
i 1=

P

∑=

wj
y

rj k i+() yj k i+()–[]

Sy k()
Sy k()

Changing Controller Settings

3-25

Rate Weights
One such simultaneous objective is to minimize the weighted sum of controller
adjustments, calculated according to

where M is the number of intervals in the control horizon, nmv is the number
of manipulated variables, is the predicted adjustment in
manipulated variable j at future (or current) sampling interval , and

 is the weight on this adjustment, called the rate weight because it
penalizes the incremental change rather than the cumulative value. Increasing
this weight forces the controller to make smaller, more cautious adjustments.

Figure 3-14: Plant Inputs for Modified Rate Weight

S∆u k() wj
∆u∆uj k i 1–+()

⎩ ⎭
⎨ ⎬
⎧ ⎫

2

j 1=

nmv

∑
i 1=

M

∑=

∆uj k i 1–+()
k i 1–+

wj
∆u

3 The Design Tool

3-26

Figure 3-14 shows that increasing the rate weight from 0.1 to 0.3 decreases the
move sizes significantly, especially the initial move (compare to Figure 3-9).

Setting the rate weight to 0.1 yields a faster approach to the T setpoint with a
small overshoot, but the initial Tc move is about six times larger than needed
to achieve the new steady state, which would be unacceptable in most
applications (not shown; try it).

Note The controller minimizes the sum . Changes in the
coolant temperature have unequal effects on the two outputs, so the
steady-state output deviations won’t be equal, even when both output weights
are unity as in Figure 3-8.

Input Weights
The controller also minimizes the weighted sum of manipulated variable
deviations from their nominal values, computed according to

where is the input weight and is the nominal value for input j. In the
above simulations, you used the default, . This is the usual choice.

When a sustained disturbance or setpoint change occurs, the manipulated
variable must deviate permanently from its nominal value (as shown in
Figure 3-9 and Figure 3-14). Using a nonzero input weight forces the
corresponding input back toward its nominal value. Test this by running a
simulation in which you set the input weight to 1. The final Tc value is closer
to its nominal value, but this causes T to deviate from the new setpoint (not
shown).

Sy k() S∆u k()+

Su k() wj
u uj k i 1–+() uj–[]

⎩ ⎭
⎨ ⎬
⎧ ⎫

2

j 1=

nmv

∑
i 1=

M

∑=

wj
u uj

wj
u 0=

Changing Controller Settings

3-27

Note Some applications involve more manipulated variables than plant
outputs. In such cases, it is common to define nonzero input weights on
certain manipulated variables in order to hold them near their most
economical values. The remaining manipulated variables eliminate
steady-state error in the plant outputs.

Blocking
The section “Weight Tuning” on page 3-22 used penalty weights to shape the
controller’s response. This section covers the following topics:

• An alternative to penalty weighting, called blocking

• Side-by-side controller comparisons

To begin, select Controllers in the tree, and click the New button, creating a
controller initialized to the Model Predictive Control Toolbox default settings.
Rename this controller Blocking 1 by editing the appropriate table cell.

Select Blocking 1 in the tree, select its Weight Tuning tab, and set the Weight
for output C_A to 0 (see “Weight Tuning” on page 3-22 to review the reason for
this). Leave other weights at their defaults.

Now select the Model and Horizons tab, and select its Blocking check box.
This activates the blocking options. It also deactivates the Control Horizon
option (the blocking options override it).

Set Number of moves computed per step to 2. Verify that Blocking
allocation within prediction horizon is set to Beginning, the default.

Select Controllers in the tree, and use its Copy button to create two
controllers based on Blocking 1. Rename these Blocking 2 and Blocking 3.
Edit their blocking options, setting Blocking allocation within prediction
horizon to Uniform for Blocking 2, and to End for Blocking 3.

Select Scenarios in the tree. Rename the T Setpoint scenario to T Setpoint 1,
and set its Controller option to Blocking 1.

Create two copies of T Setpoint 1, naming them T Setpoint 2 and
T Setpoint 3. Set their Controller options to Blocking 2 and Blocking 3,

3 The Design Tool

3-28

respectively. Now you should have three scenarios, identical except for the
controller being used.

Delete the MPC1 controller and select T Setpoint 1 in the tree. Your view
should resemble Figure 3-15, with three controllers and three scenarios in the
tree.

Figure 3-15: T Setpoint 1 Scenario

If any simulation plot windows are open, close them. This forces subsequent
simulations to generate new plots.

Changing Controller Settings

3-29

Simulate each of the three scenarios. When you run the first, new plot windows
open. Leave them open when you run the other two scenarios so all three
results appear together, as shown in Figure 3-16 and Figure 3-17.

Figure 3-16: Blocking Comparison, Outputs

Figure 3-17: Blocking Comparison, Manipulated Variable

3 The Design Tool

3-30

The numeric annotations on these figures refer to the three scenarios. Recall
that T Setpoint 1 uses the default blocking, which usually results in faster
setpoint tracking but larger manipulated variable moves. The blocking options
in T Setpoint 2 and T Setpoint 3 reduce the move size but make setpoint
tracking more sluggish.

Results for T Setpoint 3 are very similar to those shown in Figure 3-13 and
Figure 3-14, where a penalty rate weight reduced the move sizes. If rate
weights and blocking achieve the same ends, why does the Model Predictive
Control Toolbox provide both features? One difference not evident in this
simple problem is that blocking applies to all the manipulated variables in your
application, but each rate weight affects one only.

Note To obtain the dashed lines shown for T Setpoint 2, activate the plot
window and select Property Editor from the View menu. The Property
Editor appears at the bottom of the window. Then select the curve you want to
edit. The Property Editor lets you change the line type, thickness, color, and
symbol type. Select the axis labels to see additional options.

By default, the Model Predictive Control Toolbox plots each scenario on the
same plot. If you recalculate a revised scenario, it replots that result but doesn’t
change any others.

If you don’t want to see a particular scenario, right-click on the plot and use the
Responses menu option to hide it. (You can also close the plot window and
recalculate selected responses in a fresh window.)

Defining Manipulated Variable Constraints
Physical devices have limited ranges and rates of change. For example, the
CSTR model’s coolant might be restricted to a 20 degree range (from -10 to 10)
and its maximum rate of change might be degrees per control interval. If
these are true physical restrictions, it’s good practice to include them in the
controller design. Otherwise the controller might attempt an unrealistic
adjustment.

To compare constrained and unconstrained performance for the CSTR example,
select the Blocking 1 controller in the tree, and rename it Unconstrained.

4±

Changing Controller Settings

3-31

Select its Model and Horizons tab and turn off (clear) its Blocking option.
Increase Control horizon to 3, and reduce Control Interval to 0.25.

Delete the Blocking 2 and Blocking 3 controllers. (Click OK to dismiss the
resulting warning messages.)

Copy the Unconstrained controller. Name this copy MVconstraints, and
select its Constraints tab. Then enter the manipulated variable constraints
shown in Figure 3-18.

Figure 3-18: Entering CSTR Manipulated Variable Constraints

If any simulation plot windows are open, close them (to force fresh plots).

Select the T Setpoint 1 scenario. If necessary, set its Controller option to
Unconstrained. Change Duration to 15, and simulate the scenario.

Select the T Setpoint 2 scenario, set its Controller option to MVconstraints,
change its Duration to 15, and simulate it. The results appear in Figure 3-19
and Figure 3-20.

The larger control horizon and smaller control interval cause the
unconstrained controller to make larger moves (see Figure 3-20, curve 1). The
output settles at the new setpoint in about 5 time units rather than the 10
required previously (compare curve 1 in Figure 3-19 to curve 1 in Figure 3-16).

Figure 3-20 (curve 2) shows that the Max Up Rate constraint limits the size of
the first two moves to 4 degrees. The third move hits the Maximum constraint

3 The Design Tool

3-32

at 10 degrees. The coolant temperature remains saturated at its upper limit for
the next 7 control intervals, then slowly moves back down to its final value.

Figure 3-19 (curve 2) shows that the output response is slower, but still settles
at the new setpoint smoothly within about 5 time units. This demonstrates the
anti-windup protection provided automatically by the Model Predictive
Control Toolbox controller.

Figure 3-19: CSTR Outputs, Unconstrained (1) and MVconstraints (2)

Changing Controller Settings

3-33

Figure 3-20: CSTR Manipulated Variable, Unconstrained (1) and
MVconstraints (2)

3 The Design Tool

3-34

Disturbance Modeling and Estimation
The previous sections tested the controller’s response to setpoint changes. In
process control, disturbances rejection is often more important. The Model
Predictive Control Toolbox allows you to tailor the controller’s disturbance
response. The following example assumes that you have just completed the
above section, and the design tool is still open.

Select the first controller in the tree and rename it InputSteps. (Its settings
should be identical to the Unconstrained controller of the previous section.)

Copy this controller. Rename the copy OutputSteps. Select its Estimation tab.
The initial view should be as in Figure 3-21. Note the following:

• The Model Predictive Control Toolbox default settings are being used. (The
Use Model Predictive Control Defaults button restores these settings if
you modify them.)

• The Output disturbances tab is selected, and the Signal-by-signal option
is on. The graphic shows that the output disturbances add to each output.

• The tabular entries show, however, that these disturbance magnitudes are
currently zero.

Changing Controller Settings

3-35

Figure 3-21: Default Output Disturbance Settings for CSTR

3 The Design Tool

3-36

Select the Input disturbances tab. (This would be inactive if the plant model
had no unmeasured disturbances.) The view should change to that shown in
Figure 3-22.

Figure 3-22: Default Input Disturbance Settings for CSTR

In this case the disturbance magnitude is nonzero, and the disturbance type is
Steps. Thus, the controller assumes that disturbances enter as random steps
(integrated white noise) at the plant’s unmeasured disturbance input.

Select the Measurement noise tab, verifying that the controller is assuming
white noise, magnitude 1 (not shown).

The following summarizes the Model Predictive Control Toolbox default
disturbance modeling assumptions for this case:

• Additive output disturbances: none

• Unmeasured input disturbances: random steps (integrated white noise)

• Measurement noise: white

Changing Controller Settings

3-37

In general, if your plant model includes unmeasured disturbance inputs, the
Model Predictive Control Toolbox default strategy will assume that they are
dominant and sustained, as in the above example. This forces the controller to
include an integrating mode, intended to eliminate steady-state error.

If the plant model contains no unmeasured input disturbances, the Model
Predictive Control Toolbox assumes sustained (integrated white noise)
disturbances at the measured plant outputs.

If there are more measured outputs than unmeasured input disturbances, it
assumes sustained disturbances in both locations according to an algorithm
described in the Model Predictive Control Toolbox online documentation.

In any case, the design tool displays the assumptions being used.

To modify the estimation strategy in the OutputSteps controller, do the
following:

• Select the Input disturbances tab. Set the disturbance Type to White, and
its Magnitude to 0.

• Select the Output disturbances tab. For the T output, set the disturbance
Type to Steps, and its magnitude to 1.

This reverses the default assumptions, i.e., the OutputSteps controller
assumes that sustained disturbances enter at the plant output rather than at
the unmeasured disturbance input. The InputSteps controller is still using the
original (default) assumptions.

Next, select the first scenario in the tree. Rename it Disturbance 1, set its
Duration to 30, define all setpoints as constant zero values, and define a
unit-step disturbance in the unmeasured input, C_A_i. If necessary, set its
Controller option to InputSteps. Figure 3-23 shows the final Disturbance 1
scenario.

3 The Design Tool

3-38

Figure 3-23: CSTR Disturbance 1 Scenario

Copy Disturbance 1. Rename the copy Disturbance 2, and set its Controller
option to OutputSteps.

If necessary, close any open simulation plot windows. Simulate both scenarios.
Figure 3-24 and Figure 3-25 show the results.

Figure 3-24 shows that default controller (case 1) returns to the setpoint in less
than one third the time required by the modified controller (case 2). Its
maximum deviation from the setpoint is also 10% smaller. Figure 3-25 shows

Changing Controller Settings

3-39

that in both cases the input moves are smooth and of reasonable magnitude. (It
also shows the input disturbance.)

The default controller expects unmeasured disturbances to enter as defined in
the scenarios, so it’s not surprising that the default controller performs better.
The main message here is that the difference can be large, so it merits design
consideration.

Figure 3-24: CSTR Outputs for Disturbance Scenarios 1 and 2

3 The Design Tool

3-40

Figure 3-25: CSTR Inputs for Disturbance Scenarios 1 and 2

For comparison, reset the two scenarios so that the only disturbance is a
one-degree step increase added to the measured reactor temperature. The
modified controller (case 2) is designed for such disturbances, and Figure 3-26
shows that it performs better, but the difference is less dramatic than in the
previous scenario. The default controller is likely to be best if the real process
has multiple dominant disturbance sources.

Note In this modified scenario, the disturbance biases the measured
temperature by +1 degree. The controller drives the biased measurement to
the setpoint, so the true temperature exhibits a -1 degree steady-state error,
as shown in Figure 3-26.

Changing Controller Settings

3-41

Figure 3-26: CSTR Outputs, Output Disturbance Scenarios 1 and 2

3 The Design Tool

3-42

Defining Soft Output Constraints
The discussion in “Weight Tuning” on page 3-22, defined temperature control
as the primary goal for the CSTR application. The predicted (but unmeasured)
reactant concentration, CA, could vary freely.

Suppose this were acceptable provided that CA stayed below a specified
maximum (above which unwanted reactions would occur). You can use an
output constraint to enforce this specification.

Start with a single controller identical to the InputSteps controller described
in “Disturbance Modeling and Estimation” on page 3-34. Rename it
Unconstrained.

Right-click on Unconstrained in the tree and select Copy. Rename the copy
Yhard. Make another copy, naming it Ysoft.

Similarly, start with a single scenario identical to Figure 3-23, except that its
Controller setting should be Unconstrained. Name this scenario None.

Right-click on None in the tree and select Copy. Rename the copy Hard, and
change its Controller setting to Yhard. Make another copy, naming it Soft and
changing its Controller setting to Ysoft. Your tree should be as shown below.

Select your Yhard controller. On the Constraints tab, set the maximum for CA
to 3 as shown below.

Click the Constraint Softening button to obtain the dialog shown in
Figure 3-27. The Input constraints section shows the bounds on the inputs

Defining Soft Output Constraints

3-43

and their rates, and relaxation bands, which let you soften these constraints.
By default, input constraints are hard, meaning that the controller tries to
prevent any violation.

Figure 3-27: Constraint Softening Dialog

The Output constraints section lists the output limits and their relaxation
bands. By default, the output constraints are soft. Make the CA upper limit
hard by entering a zero as its relaxation band (as in Figure 3-27).

Select the Ysoft controller. Define a soft upper bound on CA by using the same
settings shown in Figure 3-27, but with a relaxation band of 100 instead of 0.

Simulate the three scenarios in the order they appear in the tree, i.e., None,
Hard, Soft. The resulting output responses appear in Figure 3-28.

3 The Design Tool

3-44

Figure 3-28: Constraint Softening Scenarios: 1 = None, 2 = Hard, 3 = Soft

Curve 1 is without output constraints, which is identical to curve 1 in
Figure 3-24. This controller allows the CA output to vary freely, but the
controlled temperature returns to its setpoint within 10 time units after the
disturbance happens.

Curve 2 shows the behavior with a hard upper limit at CA = 3. Once CA reaches
this bound, the controller must use its one manipulated variable (Tc) to satisfy
the constraint, so it’s no longer able to control the temperature.

Curve 3 shows the result for a soft constraint. The controller reaches a
compromise between the competing objectives: temperature control and
constraint satisfaction. As you’d expect, performance lies between the curve 1
and curve 2 extremes.

The numerical value of the relaxation band represents a relative tolerance for
constraint violations, not a strict limit (if it were the latter, it would be a hard
constraint). If you were to increase its relaxation band (currently set at 100),
performance would move toward Case 1, and vice versa.

Defining Soft Output Constraints

3-45

If you have multiple constraints, you can harden or soften them simultaneously
using the slider at the bottom of the controller’s constraint softening dialog (see
Figure 3-27).

In general, you’ll have to experiment to determine the settings that provide
appropriate trade-offs for your application. In particular, the relaxation band
settings interact with those on the controller’s Weight Tuning tab (see “Weight
Tuning” on page 3-22).

Another important factor is the expected numerical range for each variable.
For example, if a particular variable stays within of its nominal value, it
should have a small relaxation band relative to another variable having a
range of .

For details on the Model Predictive Control Toolbox constraint softening
formulation, see the “Optimization Problem” section in the Model Predictive
Control Toolbox online documentation.

0.1±

100±

3 The Design Tool

3-46

Robustness Testing
It’s good practice to test your controller’s sensitivity to prediction errors.
Classical phase and gain margins are one way to quantify robustness for a
SISO application. The Robust Control Toolbox and µ-Analysis and Synthesis
Toolbox provide sophisticated approaches for MIMO systems. It can also be
helpful to run simulations. The following example illustrates the simulation
approach.

Plant Model Perturbation
Use the following code to create a perturbed version of the CSTR model:

CSTRp = CSTR;
CSTRp.a=[-0.0303 -0.0113
 -0.0569 -0.1836];
CSTRp.b=[-0.0857 0.0191
 0.1393 0.4241];

This creates a copy of CSTR called CSTRp, then replaces the state space A and B
matrices with perturbed versions (compare to the originals defined in
“State-Space Format” on page 2-5). Use the following command to compare the
two step responses:

step(CSTR, CSTRp)

Observe the difference in the responses (not shown).

Select Plant models in the tree. Click the Import button and import the CSTRp
model.

Simulation Tests
Delete all controllers except the first one in the tree. If necessary, make its
settings identical to Unconstrained (see “Defining Manipulated Variable
Constraints” on page 3-30).

Delete all scenarios except the first, naming that Accurate Model. Define its
properties as shown in Figure 3-29. The scenario begins with a step change in
the temperature setpoint, followed 25 time units later by a step disturbance in
the reactant entering the CSTR.

Robustness Testing

3-47

Copy Accurate Model. Rename the copy Perturbed Model, and set its Plant
option to CSTRp. Thus, both scenarios use the same controller, which is based
on the CSTR model, but the Perturbed Model scenario uses a different model
to represent the “real” plant. This tests the controller’s robustness to a change
in plant parameters.

Figure 3-29: Robustness Test, Accurate Plant Model Scenario

Simulate the two scenarios. Figure 3-30 shows the output responses. As
expected, setpoint tracking degrades when the model is inaccurate, but
performance is still acceptable.

The disturbance rejection appears to improve with the perturbed model. This
is a consequence of the perturbations used. The gain for the T/CAi output/input

3 The Design Tool

3-48

pair is about 15% smaller in the CSTRp model, which has two beneficial effects:
the actual impact of the disturbance is reduced, and the controller is aggressive
because it expects a larger impact.

Figure 3-30: Robustness Test, Accurate Model (1) and Perturbed Model (2)

Note MIMO applications are usually more sensitive to model error than
SISO applications, so robustness testing is especially recommended for MIMO
cases.

Plant Models with Delays

3-49

Plant Models with Delays
Unlike many controller design approaches, the Model Predictive Control
Toolbox can deal directly with models that include delays. A typical example is
the distillation column model, DC, introduced in “Multiinput Multioutput
(MIMO) Plants” on page 2-11. It includes a delay in each input/output channel.

You don’t need to approximate the delays in order to use this model in the
Model Predictive Control Toolbox. On the other hand, the presence of delays
will influence controller performance, and your controller specifications should
account for them. The following example provides some guidelines and covers
the following topics:

• “Importing the Plant Model” on page 3-49

• “Specifying Controller Horizons” on page 3-50

Importing the Plant Model
Before continuing, the DC model must be in your workspace. (See “Multiinput
Multioutput (MIMO) Plants” on page 2-11 for the commands needed to create
it.)

Start the Model Predictive Control Toolbox design tool (type mpctool at the
MATLAB command line). Import the DC model (see “Loading a Plant Model” on
page 3-3).

Select Plant models in the tree. The DC model should be the only one listed.
Scroll the Model details view to show the last few lines, which should appear
as in Figure 3-31.

Figure 3-31: DC Model Details, Maximum Delay Values

3 The Design Tool

3-50

Specifying Controller Horizons
The model’s maximum I/O delay is 8.1 minutes. It is good practice to specify the
prediction and control horizons such that

where P is the prediction horizon, M is the control horizon, td,max is the
maximum delay, and is the control interval.

Select MPC1 (the default controller name) in the tree. Select the Model and
Horizons tab, and set Control interval to 1, a reasonable choice if the closed
loop response time is to be of order 5-10 minutes.

Given the amount of plant delay and the specified control interval, the default
horizons, P = 10, M = 2, would be a poor choice. Instead, set Prediction
horizon to 30, and Control horizon to 5.

Select Scenario1 in the tree. Set Duration to 50. Define a constant setpoint of
1 for the first output (the distillate purity). Define a step increase of 1 in the
second output’s setpoint, occurring at t = 25. All other signals should be zero.
Simulate the scenario. Figure 3-32 and Figure 3-33 show the results.

P M– td max, ∆t⁄»

∆t

Plant Models with Delays

3-51

Figure 3-32: DC Setpoint Response Scenario, Outputs

3 The Design Tool

3-52

Figure 3-33: DC Setpoint Response Scenario, Inputs

As seen in Figure 3-32, the first output cannot respond for a minimum of 1
minute, the delay in the y1/u1 transfer function. After that, it reaches the
setpoint in two minutes and settles quickly. Similarly, y2 cannot respond for a
minimum of 3 minutes, the delay in the y2/u2 transfer function, but settles
rapidly thereafter. Changing one setpoint disturbs the other output, but the
magnitude of this interaction is less than 10%.

Figure 3-33 shows that the initial input moves are more than 5 times the final
change. Also, there are periodic pulses in the control action as the controller
attempts to counteract the delayed effects of each input on the two outputs.

You can moderate these effects using the weights (see “Weight Tuning” on
page 3-22). Instead, define a custom blocking strategy as illustrated in
Figure 3-34. This uses five moves as before, but allocates them in increasing
block sizes.

Figure 3-35 and Figure 3-36 show the corresponding simulation results. The
initial input moves are much smaller, and the moves are less oscillatory
overall. The trade-off is a slower output response with about 20% interaction.

Plant Models with Delays

3-53

Figure 3-34: DC Model, Custom Blocking Strategy

Figure 3-35: Output Responses for Setpoint Scenario with Blocking

3 The Design Tool

3-54

Figure 3-36: Input Moves for Setpoint Scenario with Blocking

Nonsquare Plants

3-55

Nonsquare Plants
A nonsquare plant has an unequal number of manipulated variables and
output variables. This is common in practice, and the Model Predictive Control
Toolbox supports an excess of manipulated variables or outputs. In such cases
you will usually need to modify the default Model Predictive Control Toolbox
settings.

This section covers the following topics:

• “More Outputs Than Manipulated Variables” on page 3-55

• “More Manipulated Variables Than Outputs” on page 3-56

More Outputs Than Manipulated Variables
When there are excess outputs, it is impossible to hold all of them at setpoints.
You have the following options:

1 Enforce setpoints on all outputs, in which case all will deviate from their
setpoints to some extent.

2 Specify that certain outputs need not be held at setpoints by setting their
weights to zero on the controller’s Weight tuning tab.

The initial test of the CSTR controller used option 1 (the default), which caused
both outputs to deviate from their setpoints (see Figure 3-8). You can adjust the
offset in each output by changing the output weights. Increasing an output
weight decreases the offset in that output (at the expense of increased offset in
other outputs).

The modified CSTR controller used option 2 (see the discussion in “Weight
Tuning” on page 3-22). In general, if the application has Ne more outputs than
manipulated variables, setting Ne output weights to zero should allow the
remaining outputs to be held at setpoints (unless the manipulated variables
are constrained). This was the case for the modified CSTR controller (see
Figure 3-13).

Outputs that have been “sacrificed” by setting their weights to zero can still be
useful. If measured, they can help the controller to estimate the plant’s state,
thereby improving its predictions. They can also be used as indicators, or as
variables to be held within an operating region defined by output constraints.

3 The Design Tool

3-56

More Manipulated Variables Than Outputs
In this situation, the default Model Predictive Control Toolbox settings should
provide offset-free output-setpoint tracking, but the manipulated variables are
likely to drift.

One way to avoid this is to use manipulated variable setpoints. If there are Ne
excess manipulated variables and you hold Ne of them at target values, the rest
should not drift. Rather, they will attain the values needed to eliminate output
offset.

To define a manipulated variable setpoint, do the following:

1 Enter the setpoint value in the Nominal field in the signal properties view
– see Figure 3-3

2 Assign a nonzero input weight using the Weight entry on the controller’s
Weight tuning tab – see Figure 3-12

In step 2, the magnitude of the input weight determines the extent to which the
manipulated variable can deviate from its target during a transient. See “Input
Weights” on page 3-26 for more discussion and mathematical details.

You might want to allow such deviations temporarily in order to provide better
output setpoint tracking. In that case, use a relatively small input weight. If
you want the manipulated variable to stay near its target value at all times,
increase its input weight.

Another way to avoid drift is to constrain one or more manipulated variables to
a narrow operating region. You can even hold an MV constant by setting its
lower and upper bounds to the same value (in which case its nominal value
should also be set to this value), or by setting both of its rate constraints to zero.
To define constraints, use the controller’s Constraints tab (see “Defining
Manipulated Variable Constraints” on page 3-30).

Nonlinear Plants

3-57

Nonlinear Plants
The Model Predictive Control Toolbox provides a Simulink block you can use to
control a plant modeled in Simulink. This section illustrates the procedure
using the nonlinear CSTR model introduced earlier (see “Using Simulink to
Develop LTI Models” on page 2-19). It covers the following topics:

• “The MPC Controller Block” on page 3-57

• “Initiating the Controller Design” on page 3-58

• “Validating the Linearized Model” on page 3-61

• “Modifying the Linearized Model” on page 3-63

• “Linear Simulation Tests” on page 3-64

• “Nonlinear Simulation Tests” on page 3-66

• “Modifying the Controller Using the Design Tool” on page 3-68

• “Exiting the Design Tool” on page 3-68

The MPC Controller Block
Figure 3-37 shows CSTR with an added MPC Controller block. (The model is
called CSTR_MPC.mdl in the Model Predictive Control Toolbox demos folder.)
The intent is to hold the residual concentration at a setpoint by adjusting the
coolant temperature. The feed concentration and temperature inputs are
disturbances, and the reactor temperature is an auxiliary, uncontrolled output.
The concentration has a setpoint (reference), currently fixed at 8.57.

3 The Design Tool

3-58

Figure 3-37: Simulink Model for CSTR Control

Note If you have the Model Predictive Control Toolbox and Simulink
installed, the MPC Controller block appears in your Simulink block library. If
necessary, see the Simulink documentation for details on how to use library
blocks to construct a model.

Initiating the Controller Design
Once you’ve installed an MPC Controller block in your Simulink model, as in
Figure 3-37, you need to configure it. Click on it to open its block mask, shown
below.

Nonlinear Plants

3-59

Figure 3-38: MPC Controller Block Mask

You must define the MPC controller parameter. All others are optional. If you
had used the design tool to create a controller and had saved it in your
workspace, you could type its name in the MPC controller box and you’d be
ready to test it.

Instead, create the controller using the MPC Toolbox design tool. Click the
Design button. A dialog (not shown) asks you to enter the number of
manipulated variables, i.e., the plant inputs the controller can adjust to
achieve its objectives. The coolant temperature is the only manipulated
variable, so enter 1 and click OK.

3 The Design Tool

3-60

The progress window shown below appears to mark the completion of each
controller initialization step.

They are as follows:

1 Open the Control and Estimation Tools Manager, and install a project
having the same name as the Simulink model (CSTR_MPC in this case).

2 Install a linearization task within the project and determine the plant’s I/O
points, i.e., the signals connected to the MPC Controller block’s mv
(manipulated variable) and mo (measured output) ports.

3 Determine a default operating point. This requires assumptions that might
be incorrect, as demonstrated in the next section. In particular, the default
outputs are zero.

4 Calculate a linearized plant model at this operating point using the
linearization tool in Simulink Control Design (see “Linearization Using
Simulink Control Design” on page 2-19). The controller is open loop during
this step, so it involves only the blocks between the plant inputs and outputs
(as determined in step 2).

Nonlinear Plants

3-61

5 Install a Model Predictive Control Toolbox design task in the project, use the
linearized model from step 4 to define a default controller (named MPC1),
and enter its name as the block mask’s MPC controller parameter.

When the last step has been completed, click OK to close the progress window.

Validating the Linearized Model
Automatic linearization requires assumptions that might be incorrect. You
should always validate a linearized model before using it in a controller.

As shown below, the controller task is the MPC Controller node, the name of
the corresponding Simulink block.

Note In general, a Simulink model can contain multiple controllers, in which
case the project would include multiple controller design tasks, each with a
unique name.

Start by examining the default operating point. Expand the tree until it
appears as above, and then select Operating Point. The States tab should be
active as shown (if not, click on it).

3 The Design Tool

3-62

By default, the Simulink Control Design linearization tool tries to find a
steady-state point, i.e., it sets the Desired dx column to zero. As shown above,
the Actual dx column contains a value that is far from zero.

Next, click the Outputs tab. By default, the linearization tool sets the desired
plant output to zero. In the CSTR, this would require 100% conversion of the
reactant, which is impossible, and the Outputs tab confirms that the desired
values were not achieved.

Finally, export the linearized model to your workspace. Right-click on the
MPC open loop plant 1 node and choose Export to obtain the dialog shown
below.

Rename Linearized Model to Plant1. Clear the Operating Point check box
(because there’s no reason to export it) and click OK. This exports the
linearized model as an LTI object named Plant1.

At the MATLAB command line, type

step(Plant1)

You should obtain the following plot.

Nonlinear Plants

3-63

Thus, the linearized model predicts that a unit step increase in the coolant
temperature will decrease the residual concentration, which is qualitatively
correct. (Increasing the coolant temperature increases the reactor
temperature. This increases the reaction rate, and the residual concentration
decreases.)

The predicted magnitude is very small, however: of order 10−6. It should be of
order 10−2 (you can verify this by removing the controller block from the
diagram and running an open-loop step-response simulation). The assumption
of zero plant outputs used to generate the default operating point are the cause.
If this incorrect model were used in the controller, the coolant-temperature
adjustments would be far too large, probably resulting in unstable behavior.

Modifying the Linearized Model
Therefore, the next step is to define a reasonable operating point and calculate
a corresponding linearized model.

In the navigation tree, click the MPC Controller node. Notice that the nominal
input and output signal values are zero by default. As discussed in
“Linearization Using Simulink Control Design” on page 2-19, a coolant

3 The Design Tool

3-64

temperature of 298.15 K is the steady state for the plant’s initial condition
(with the residual concentration at 8.57). Thus, in the Input signal properties
table, set the coolant temperature’s nominal value to 298.15, as shown below,
and in the Output signal properties table, set the concentration’s nominal
value to 8.57. Also assign more descriptive signal names, as shown.

Click the Import Plant button to obtain the Plant Model Importer dialog.
Then do the following:

1 Select the Linearized Plant from Simulink tab.

2 Change the Linearization model name to Plant2.

3 Select Create a new operating condition from MPC I/O values, and then
click OK. A new model node named Plant2 and its operating point will
appear within your design task.

4 Expand the Controllers node to expose the MPC1 node and select it. On its
Model and Horizons pane, set Plant model to Plant2. This replaces the
default (invalid) model with the modified one.

Leave the other controller settings at their default values.

Linear Simulation Tests
It’s good practice to test a controller in linear simulations before trying it on the
nonlinear plant. Expand the Scenarios node and select Scenario1. Set Plant
to Plant2, and set Duration to 40. Finally, define a step increase of 0.5 units
in the concentration setpoint starting at time t = 1, as shown below.

Nonlinear Plants

3-65

Click the scenario’s Simulate button. This linear test predicts a smooth, rapid
approach to the new setpoint with minimal overshoot, as shown below.

The corresponding coolant temperature adjustments are reasonable (not
shown). If anything, you might want to make the controller more aggressive by
adjusting its tuning weights (see “Weight Tuning” on page 3-22).

Note This plant’s steady-state gain is of order 0.01. Therefore, the default
tuning weights lead to a relatively sluggish response. In general, you must
adjust the tuning weights to compensate for the plant’s natural input/output
response magnitudes.

3 The Design Tool

3-66

You can also run tests to verify that the controller responds rapidly to either of
the two unmeasured disturbances (not shown).

Nonlinear Simulation Tests
The controller seems to be performing well in linear tests, so try it with the
nonlinear plant. As will be demonstrated below, the design tool makes it easy
to run a simulation, change the controller design if performance is
unsatisfactory, and retest.

In the CSTR_MPC model window, change the concentration setpoint to 9.07. This
simulates a 0.5-unit step increase in the setpoint at time t = 0. Run the
Simulink simulation. The MPC Controller block automatically obtains the
most recent MPC1 definition from the design tool. If necessary, open the
model’s concentration scope block. The result should be as shown below.

The nonlinear response is more sluggish than the linear prediction. The
controller reduces the coolant temperature to about 284.6 K (verify this by
opening the model’s coolant temperature scope), whereas the linear simulation
predicts a reduction to 289.4 K. In other words, when plant moves in this
direction, the linearized model’s gain is too large. Still, the concentration goes
to the setpoint rapidly.

Next, set the concentration setpoint to 8.07, i.e., a step-change of equal
magnitude in the opposite direction. Run the simulation to obtain the
concentration scope response shown below.

Nonlinear Plants

3-67

In this direction, the response is underdamped. You can verify that the
controller changes the coolant temperature to 304.1 K, an increase of 6.0 K
(recall the decrease of 13.5 K when the change was in the opposite direction).
In other words, the controller’s linear model underpredicts the effect of a
coolant temperature increase. If the setpoint were reduced significantly, the
closed-loop system would become unstable (try 7.0, for example).

Thus, the controller’s effective operating range is limited. If you wanted to
operate at a low concentration, you’d need to determine a linearized model at
that condition and use it to design another controller.

Note This is typical of strongly nonlinear plants. If you needed to operate a
conventional controller over such a wide range, you might consider gain
scheduling. Equivalently, you could define predictive controllers for several
operating points and switch from one to another depending on the measured
concentration (see “Simulations Involving Nonlinear Plants” on page 4-8 for
an example of this).

For the tested range, however, the oscillations die out quickly. You can verify
that the controller responds equally well to small, sustained disturbances (i.e.,

 in feed concentration or in feed temperature.0.5± 3±

3 The Design Tool

3-68

Modifying the Controller Using the Design Tool
Keeping the design tool open makes it easy to test controller modifications.
Each time you run a Simulink simulation, the MPC Controller block
automatically obtains the latest settings for its MPC controller parameter
(MPC1 in the above tests).

It’s also easy to compare several controllers. Suppose you wanted to try a
different control interval (the controller designed above uses a 1-second
interval). Create a new controller by right-clicking on the design tool’s MPC1
controller node, and selecting Copy Controller in the menu. This creates a
duplicate controller called MPC1_copy. Rename it MPC2. Select MPC2 in the
tree, activate its Model and Horizons tab and set Control interval to 2.

Now return to the controller block mask (if necessary, double-click on the block
to open the mask) and change MPC controller from MPC1 to MPC2. Run a
simulation with a disturbance or setpoint change, and then display the
Coolant Temperature scope. You should see that the controller is now making
step-wise adjustments every 2 minutes. As would be expected, controller
performance degrades with less frequent measurement feedback, but not
much.

To restore the original controller, just change MPC2 to MPC1 in the block mask.

Exiting the Design Tool
When you close the design tool, you’ll be prompted to save any projects you’ve
created or edited. For details, see “Saving a Project” on page 3-70.

Once the design tool has closed, the MPC Controller block mask expects its
controller object to be in your workspace. Thus, you’ll also be prompted to
export such controller objects. You need to do this if you plan to run your
Simulink model with the design tool closed.

Saving Your Work

3-69

Saving Your Work
You’ll usually want to save your design so you can reuse or revise it. You can
save individual controllers or an entire project.

When you close the design tool, you’ll be prompted to save new or modified
designs. You can also save manually to preserve an intermediate state or guard
against an unexpected shutdown.

This section covers the following topics:

• “Exporting a Controller” on page 3-69

• “Saving a Project” on page 3-70

Exporting a Controller
To save a controller, export it to your MATLAB workspace or to a MAT-file. The
former allows you to continue using the controller in command-line functions
or a Simulink block. Your workspace disappears when you exit MATLAB,
however. A MAT-file is permanent, and you can reload it when needed in a
subsequent MATLAB session.

The following example assumes that the design tool is open and in the state
described in the previous section. Suppose you want to export the controller to
your workspace. Expand the tree if necessary, right-click on MPC2, and select
Export Controller from the resulting menu. The dialog below appears.

The default behavior is to export the selected controller to the workspace. Click
Export to confirm. You can verify the export by typing

3 The Design Tool

3-70

whos

at the MATLAB prompt. The resulting list should include an mpc object named
MPC2. Type

MPC2

to display the object’s properties.

Saving a Project
To save your entire project, click the toolbar’s Save button.

The following dialog appears.

Figure 3-39: Dialog for Saving a Controller Design Project

The default behavior saves the current project (named Project - CSTR_MPC in
this case) in a MAT-file (called CSTR_MPC here). If the design tool had contained
other projects, they would appear in the list, and you could select the ones you
wanted to save.

Save button

Saving Your Work

3-71

The MAT-file will be saved in the default directory. To verify the location, click
the browse (...) button and change the directory if necessary. When ready to
save, click OK.

3 The Design Tool

3-72

Loading Your Saved Work
The following assumes that you’ve saved a project as described in the previous
section. To reload this project, close the design tool if it’s open. Also clear any
mpc objects from your workspace. (Type whos at the MATLAB prompt for a list
of objects.) For example, if MPC1 and MPC2 are in your workspace, type

clear MPC1 MPC2

to clear (remove) them.

If you’ve closed the CSTR_MPC model, open it. (Figure 3-37 shows the model
diagram). Double-click the MPC Controller block to open its mask, and verify
that the MPC Controller parameter is set to MPC2.

Note If you were to attempt to run the CSTR_MPC model at this stage, an error
dialog would indicate that the MPC Controller block was unable to initialize.
The MPC2 object specified in the block mask must be loaded into your
workspace or be part of an active design tool task.

You could define the required MPC2 object in one of the following ways:

• Import MPC2 from a MAT-file (assuming you had saved it as explained in
“Exporting a Controller” on page 3-69).

• Load the model’s project file, which contains a copy of MPC2.

To use the second approach, open the design tool by typing

mpctool

in the Command Window. This creates a blank Model Predictive Control
Toolbox project called MPCdesign. Click the Load button on the toolbar.

Load button

Loading Your Saved Work

3-73

This opens a dialog similar to that shown in Figure 3-39. Use it to select the
project file you’ve saved, and then click OK to load the project. It should appear
in the tree. Verify that it contains a controller named MPC2.

Run the CSTR_MPC model in Simulink. The block mask automatically retrieves
MPC2 from the design tool, and the simulation runs. In other words, loading
the project automatically restores the link between the design tool and the
MPC Controller block.

3 The Design Tool

3-74

4
Using Model Predictive
Control Toolbox Functions

Controller Definition (p. 4-2) Creates and modifies a controller using Model Predictive
Control Toolbox functions

Linear Simulations (p. 4-6) Simulates the closed-loop response of a linear system
that includes a Model Predictive Control Toolbox
controller

Simulations Involving Nonlinear Plants
(p. 4-8)

Uses functions for flexible, closed-loop simulation of
systems with nonlinear plants.

Analysis Tools (p. 4-14) Analyzes Model Predictive Control Toolbox controllers

4 Using Model Predictive Control Toolbox Functions

4-2

Controller Definition
Chapter 3, “The Design Tool” showed how to use the Model Predictive Control
Toolbox design tool to create a controller and test it. You might prefer to use
functions instead. They allow access to options not available in the design tool,
as well as automation of repetitive tasks using scripts and customized plotting.

This section covers the following topics:

• “Creating a Controller Object” on page 4-2

• “Viewing and Altering Controller Properties” on page 4-3

Creating a Controller Object
The following uses the CSTR model described in Chapter 2, “Building Models”
as an example. To follow along, verify that the model’s LTI object is in your
MATLAB workspace (if necessary, create it as explained in “Chemical Reactor
Example” on page 2-5, and set its label and signal type properties as explained
in “LTI Properties for the CSTR Example” on page 2-7).

The mpc function is the starting point for controller design. For example, type

Ts = 1;
MPCobj = mpc(CSTR, Ts);

to create a controller based on the CSTR model with a control interval of 1 time
unit, and all other parameters at their default values.

Note MPCobj is an mpc object. It contains a complete controller as defined by
the Model Predictive Control Toolbox.

To display the controller’s properties, type

display(MPCobj)

or type the object’s name without a trailing semicolon.

Controller Definition

4-3

Viewing and Altering Controller Properties
Once you’ve defined an mpc object, it’s easy to alter its properties. For a
description of the editable properties, type

mpcprops

To display the list of properties and their current values, type

get(MPCobj)

which in this case displays

ManipulatedVariables (MV): [1x1 struct]
 OutputVariables (OV): [1x2 struct]
 DisturbanceVariables (DV): [1x1 struct]
 Weights (W): [1x1 struct]
 Model: [1x1 struct]
 Ts: 1
 Optimizer: [1x1 struct]
 PredictionHorizon (P): 10
 ControlHorizon: 2
 History: [2e+003 7 21 20 18 20.1]
 Notes: {}
 UserData: []

To alter one of these properties, you can use the syntax

ObjName.PropName = value;

where ObjName is the object name, and PropName is the property you want to
set. For example, to change the prediction horizon from 10 (the default) to 15,
type

MPCobj.P = 15;

Note You can abbreviate property names provided that the abbreviation is
unambiguous.

4 Using Model Predictive Control Toolbox Functions

4-4

As shown above, many of the properties are MATLAB structures containing
additional properties. For example, type

MPCobj.MV

which displays

 Min: -Inf
 Max: Inf
 MinECR: 0
 MaxECR: 0
 RateMin: -Inf
 RateMax: Inf
 RateMinECR: 0
 RateMaxECR: 0
 Target: 'nominal'
 Name: 'T_c'
 Units: ''

This shows that the default controller has no constraints on the manipulated
variable. To include constraints as shown in Figure 3-18, you could type

MPCobj.MV.Min = -10;
MPCobj.MV.Max = 10;
MPCobj.MV.RateMin = -4;
MPCobj.MV.RateMax = 4;
MPCobj.MV.Units = 'Deg C';

or more compactly using the set syntax

set(MPCobj, 'MV', struct('Min', -10, 'Max', 10, ...
'RateMin', -4, 'RateMax', 4, 'Units', 'Deg C'));

Note The Units property is for display purposes only and is optional.

Controller Definition

4-5

There are two outputs in this case, so MPCobj.OV is a 1-by-2 structure. To set
measurement units to the values shown in Figure 3-12, you could type

MPCobj.OV(1).Units = 'Deg C';
MPCobj.OV(2).Units = 'kmol/m^3';

Finally, check the default weights by typing

MPCobj.W

which displays

 ManipulatedVariables: 0
 ManipulatedVariablesRate: 0.1000
 OutputVariables: [1 1]
 ECR: 100000

Change to the values shown in Figure 3-12 by typing

MPCobj.W.ManipulatedVariablesrate = 0.3;
MPCobj.W.OutputVariables = [1 0];

When setting the properties manually you can specify a different weight for
each step in the prediction horizon (this isn’t possible when using the design
tool). For example,

MPCobj.W.OutputVariables = [0.1 0; 0.2 0; 0.5 0; 1 0];

de-emphasizes setpoint tracking errors early in the prediction horizon. The
default weight of 1 would be used for the fourth step and beyond. Constraints
can also be time varying. Type mpcprops for details.

You could also alter the controller’s disturbance rejection characteristics using
functions that parallel the design tool’s disturbance modeling options
(described in “Disturbance Modeling and Estimation” on page 3-34). See the
reference pages for the setestim, setindist, and setoutdist functions.

4 Using Model Predictive Control Toolbox Functions

4-6

Linear Simulations
The Model Predictive Control Toolbox functions allow you to perform linear
closed-loop and open-loop simulations. This section covers the following topics:

• “Using the sim Function” on page 4-6

• “Saving Calculated Results” on page 4-6

• “Simulation Options” on page 4-7

Using the sim Function
To run a linear simulation, use the sim function. For example, given the MPCobj
controller defined in the previous section, type

T = 26;
r = [2 0];
sim(MPCobj, T, r);

This simulates the closed-loop response for a duration of 26 control intervals
with a setpoint of 2 for the first output (the reactor temperature) and 0 for the
second output (the residual concentration). Recall that the second output’s
tuning weight is zero (see the discussion in “Output Weights” on page 3-24), so
its setpoint is ignored.

By default, the same linear model is used for controller predictions and the
plant, i.e., there is no plant/model mismatch. You can alter this as shown in
“Simulation Options” on page 4-7.

When you use the above sim syntax (no output variables), it automatically plots
the plant inputs and outputs (not shown, but see Figure 3-13 and Figure 3-14
for results of a similar scenario).

Saving Calculated Results
If you’d like to save simulation results in your workspace, use the following sim
function format:

[y, t, u] = sim(MPCobj, T, r);

This suppresses automatic plotting, instead creating variables y, t, and u,
which hold the computed outputs, time, and inputs, respectively. A typical use

Linear Simulations

4-7

is to create customized plots. For example, to plot both outputs on the same axis
versus time, you could type

plot(t, y)

Simulation Options
You can modify simulation options using the mpcsimopt function. For example,
the code

MPCopts = mpcsimopt;
MPCopts.Constraints = 'off';
sim(MPCobj, T, r, MPCopts)

runs an unconstrained simulation. Comparing to the case described in “Using
the sim Function” on page 4-6, the controller’s first move is now exceeds 4 units
(the specified rate constraint).

Other options include the addition of a specified noise sequence to the
manipulated variables or measured outputs, open-loop simulations, a
look-ahead option for better setpoint tracking or measured disturbance
rejection, and plant/model mismatch.

For example, the following code defines a new plant model having gains 50%
larger than those in the CSTR model used in the controller, then repeats the
above simulation:

Plant = 1.5*CSTR;
MPCopts.Model = Plant;
sim(MPCobj, T, r, MPCopts)

In this case, the plant/model mismatch degrades controller performance, but
only slightly. Degradation can be more severe and must be tested on a
case-by-case basis.

4 Using Model Predictive Control Toolbox Functions

4-8

Simulations Involving Nonlinear Plants
The sim function accepts linear plant models only. If your plant is a nonlinear
Simulink model, you could control it as demonstrated in “Nonlinear Plants” on
page 3-57. To do so, you would define the controller using the mpc function, as
illustrated in “Creating a Controller Object” on page 4-2, and then use it as the
MPC Controller block mask’s MPC Controller parameter. You would then be
ready to run the Simulink model closed-loop.

Note You would also need to define a linear model to be used with the mpc
function. Linearization is the usual approach. See “Linearization Using
Simulink Control Design” on page 2-19.

Alternatively, your nonlinear model might be a MEX-file, or you might want to
include features unavailable in the MPC Controller block, such as a custom
state estimator. The mpcmove function is the Model Predictive Control Toolbox
computational engine, and you can use it in such cases. The disadvantage is
that you must duplicate the infrastructure that the sim function and the MPC
Controller block provide automatically.

The rest of this section covers the following topics:

• “A Nonlinear CSTR Application” on page 4-8

• “Example Code for Successive Linearization” on page 4-9

• “CSTR Results and Discussion” on page 4-10

A Nonlinear CSTR Application
The CSTR model described in “Using Simulink to Develop LTI Models” on
page 2-19 is a strongly nonlinear system. As shown in “Nonlinear Plants” on
page 3-57, a controller can regulate this plant, but degrades (and might even
become unstable) if the operating point changes significantly.

The objective of this example is to redefine the predictive controller at the
beginning of each control interval so that its predictive model, though linear,
represents the latest plant conditions as accurately as possible. This will be
done by linearizing the nonlinear model repeatedly, allowing the controller to
adapt as plant conditions change. See references [1] and [2] for more details on
this approach.

Simulations Involving Nonlinear Plants

4-9

Example Code for Successive Linearization
In the following code, the simulation begins at the CSTR model’s nominal
operating point (concentration = 8.57) and moves to a low concentration (= 2)
where the reaction rate is much higher. The required code is as follows:

[sys, xp] = CSTR_INOUT([],[],[],'sizes');
up = [10 298.15 298.15];
u = up(3);
tsave = []; usave = []; ysave = []; rsave = [];
Ts = 1;
t = 0;
while t < 40
 yp = xp;
 % Linearize the plant model at the current conditions
 [a,b,c,d]=linmod('CSTR_INOUT', xp, up);
 Plant = ss(a,b,c,d);
 Plant.InputGroup.ManipulatedVariables = 3;
 Plant.InputGroup.UnmeasuredDisturbances = [1 2];
 Model.Plant = Plant;
 % Set nominal conditions to the latest values
 Model.Nominal.U = [0 0 u];
 Model.Nominal.X = xp;
 Model.Nominal.Y = yp;
 dt = 0.001;
 Options = simset('InitialState', xp);
 [T, XP, YP] = sim('CSTR_INOUT', [t t+dt], Options, ...
 [t up; t+dt up]);
 Model.Nominal.DX = (1/dt)*(XP(end,:)' - xp(:));
 % Define the MPC Toolbox controller for the latest model
 MPCobj = mpc(Model, Ts);
 MPCobj.W.Output = [0 1];
 % Ramp the setpoint
 r = max([8.57 - 0.25*t, 2]);
 % Compute the control action
 if t <= 0
 xd = [0; 0];
 x = mpcstate(MPCobj, xp, xd, [], u);
 end
 u = mpcmove(MPCobj, x, yp, [0 r], []);
 % Simulate the plant for one control interval

4 Using Model Predictive Control Toolbox Functions

4-10

 up(3) = u;
 Options = simset('InitialState', xp);
 [T, XP, YP] = sim('CSTR_INOUT', [t t+Ts], Options, ...
 [t up; t+Ts up]);
 % Save results for plotting
 tsave = [tsave; T];
 ysave = [ysave; YP];
 usave = [usave; up(ones(length(T),1),:)];
 rsave = [rsave; r(ones(length(T),1),:)];
 xp = XP(end,:)';
 t = t + Ts;
end
figure(1)
plot(tsave,[ysave(:,2) rsave])
title('Residual Concentration')
figure(2)
plot(tsave,usave(:,3));
title('Coolant Temperature')

CSTR Results and Discussion
The plotted results appear below. Note the following points:

• The setpoint is being ramped from the initial concentration to the desired
final value (see the step-wise changes in the reactor concentration plot
below). The reactor concentration tracks this ramp smoothly with some delay
(see the smooth curve), and settles at the final state with negligible
overshoot. The controller works equally well (and achieves the final
concentration more rapidly) for a step-wise setpoint change, but it makes
radical changes in coolant temperature (not shown) that would probably be
difficult to achieve in practice.

• The final steady state requires a coolant temperature of 305.20 K (see the
coolant temperature plot below). An interesting feature of this nonlinear
plant is that if one starts at the initial steady state (coolant temperature =
298.15 K), stepping the coolant temperature to 305.20 and holding will not
achieve the desired final concentration of 2. In fact, under this simple
strategy the reactor concentration stabilizes at a final value of 7.88, far from
the desired value! A successful controller must increase the reactor
temperature until the reaction “takes off,” after which it must reduce the

Simulations Involving Nonlinear Plants

4-11

coolant temperature to handle the increased heat load. The relinearization
approach provides such a controller (see following plots).

4 Using Model Predictive Control Toolbox Functions

4-12

• Function linmod relinearizes the plant as its state evolves. This function was
discussed previously in “Linearization Using Simulink Functions” on
page 2-24. The code also resets the model’s nominal conditions to the latest
values.

• Function mpc defines a new controller based on the relinearized plant model.
The output weight tuning ignores the temperature measurement, focusing
only on the concentration.

• At t = 0, the mpcstate function initializes the controller’s extended state
vector, x, which is an mpcstate object. Thereafter, the mpcmove function
updates it automatically using the controller’s default state estimator. It
would also be possible to use an Extended Kalman Filter (EKF) as described
in [1] and [2], in which case the EKF would reset the mpcstate input
variables at each step.

• The mpcmove function uses the latest controller definition and state, the
measured plant outputs, and the setpoints to calculate the new coolant
temperature at each step.

Simulations Involving Nonlinear Plants

4-13

• The Simulink sim function simulates the nonlinear plant from the beginning
to the end of the control interval. Note that the final condition from the
previous step is being used as the initial plant state, and that the plant
inputs are being held constant during each interval.

Remember that a conventional feedback controller or a fixed Model Predictive
Control Toolbox controller tuned to operate at the initial condition would
become unstable as the plant moves to the final condition. Periodic model
updating overcomes this problem automatically and provides excellent control
under all conditions.

4 Using Model Predictive Control Toolbox Functions

4-14

Analysis Tools
The are many ways to analyze a controller design. This section highlights two
functions that support analysis of Model Predictive Control Toolbox
controllers:

• “Steady-State Gain Computation” on page 4-14

• “Controller Extraction” on page 4-14

Steady-State Gain Computation
The cloffset function computes the closed-loop, steady-state gain for each
output when subjected to a sustained, 1-unit disturbance in each output. It
assumes that no constraints will be encountered.

For example, consider the controller operating at the final steady-state of the
nonlinear CSTR of the previous section. To compute its gain, type

cloffset(MPCobj)

which gives the result

ans =

 1.0000 14.5910
 -0.0000 -0.0000

The interpretation is that the controller doesn’t react to a sustained
disturbance of 1 unit in the first output (the reactor temperature). Recall that
this output has zero weight, so the controller ignores it. The same disturbance
has no effect on the second output (the 2,1 element is zero).

If there is a 1-unit disturbance in the second output, the controller reacts, and
the first output increases 14.59 units. The keeps the second output at its
setpoint (the 2,2 element is zero).

Controller Extraction
Use the ss function to obtain an LTI representation of an unconstrained Model
Predictive Control Toolbox controller. You can then use this to analyze
closed-loop frequency response, etc.

Analysis Tools

4-15

For example, consider the controller designed in “Creating a Controller Object”
on page 4-2. To extract the controller, you could type

MPCss = ss(MPCobj);

You could then construct an LTI model of the closed-loop system using the
feedback function (see the Control Systems Toolbox for details) by typing

CSTRd = c2d(CSTR, MPCss.Ts);
CLsys = feedback(CSTRd, MPCss, 1, 2);

Note The CSTR model must be converted to discrete form with the same
control interval as the controller.

You could then type

eig(CLsys)

to verify that all closed-loop poles are within the unit circle, or

bode(CLsys)

to compute a closed-loop bode plot, etc.

4 Using Model Predictive Control Toolbox Functions

4-16

Bibliography
[1] Lee, J.H. and N.L. Ricker, “Extended Kalman Filter Based Nonlinear Model
Predictive Control,” Ind. Eng. Chem. Res., Vol. 33, No. 6,pp. 1530-1541(1994).

[2] Ricker, N. L., and J. H. Lee “Nonlinear Model Predictive Control of the
Tennessee Eastman Challenge Process,” Computers & Chemical Engineering,
Vol. 19, No. 9, pp. 961-981(1995).

Index-1

Index

B
blocking 3-27

C
cloffset function 4-14
closed-loop

design tool simulations 3-16
constraints

input 3-30
manipulated variable 3-30
output 3-42
softening 3-42

Control and Estimation Tools Manager 3-2
control horizon

specification 3-20
control interval

specification 3-20
controller settings

blocking 3-27
control interval 3-20
delay compensation 3-50
disturbance estimation 3-34
get function 4-3
horizons 3-20
input constraints 3-30
input weights 3-26
move suppression 3-25
output weights 3-24
plant model 3-20
prediction horizon 3-20
rate weights 3-25
set function 4-3
weights 3-22

controllers
comparisons 3-27
creation 4-2

design tool 3-20
design tool list 3-9
exporting 3-69
LTI object extraction 4-14
mpc function 4-2
property settings 4-3
robustness 3-46

CSTR (Continuous Stirred-Tank Reactor)
linear model 2-5
nonlinear model 2-20

D
delays

controller settings for 3-50
description

specification 3-6
design tool

loading models 3-3
starting 3-2
tree navigation 3-7
See also views

disturbance estimation 3-34
disturbances

specification in simulations 3-16
documentation 1-4

E
estimation

disturbances 3-34

G
gain

closed-loop 4-14

Index

Index-2

H
horizons

specification 3-20

I
import

plant model 3-4
importing

controller 3-72
InputGroup property 2-7
InputName property 2-8
inputs

manipulated variables 2-3
measured disturbances 2-3
names 2-8
noise 2-16
nominal value 3-6
type specification 2-9
types 2-3
unmeasured disturbances 2-3

L
linearization

operating point 2-21
repeated 4-9
Simulink Control Design 2-19
Simulink functions 2-24

linmod function 2-24
loading

controllers 3-72
project 3-72

LTI objects
properties 2-7

M
manipulated variables

definition 2-3
measured disturbances

definition 2-3
measured outputs

definition 2-3
Model Predictive Control (MPC)

related products 1-5
Toolbox 1-2

models
characteristics 2-13
delays 3-49
design tool list 3-8
disturbances 3-34
linearization 2-19
loading into design tool 3-3
LTI 2-4
LTI chemical reactor 2-5
noise inputs 2-16
nonlinear 2-19
nonlinear CSTR example 3-57
nonlinear simulation 4-8
nonsquare 3-55
perturbation 3-46
plant 2-2
prediction error 3-46
relinearizing 3-63
Simulink 2-19
state-space 2-5
step response 2-17
system identification 2-14
transfer function 2-4
zero/pole/gain 2-5
See also system identification

MPC (Model Predictive Control)

Index

Index-3

See Model Predictive Control
mpc objects

conversion to state-space 4-14
creating 4-2

mpcmove function 4-9
mpcstate objects 4-10
mpctool function

starting 3-2
MV (manipulated variables)

See manipulated variables

N
names

specification using design tool 3-6
nominal values

specification 3-6
nonlinear plants 3-57
nonsquare plants 3-55

O
objects

LTI 2-7
mpc 4-2
mpc conversion to ss 4-14
mpcstate 4-10

open-loop
design tool simulations 3-16

operating point
new 2-22
specification 2-21

OutputGroup property 2-7
OutputName property 2-8
outputs

measured 2-3
names 2-8

nominal value 3-6
setpoint definition 3-12
type specification 2-9
types 2-3
unmeasured 2-3

P
plant/model mismatch 3-46
plants

input/output signals 2-3
MIMO 2-11
nonlinear 3-57
nonlinear simulation 4-8
nonsquare 3-55

properties
mpc object 4-3

R
response plots 3-14

data markers 3-14
robustness

controller prediction error 3-46
testing 3-46

S
saving

controllers 3-69
projects 3-70

scenarios
design tool list 3-10
specification 3-12

setpoints
specification 3-12

signal labels

Index

Index-4

description 3-6
name 3-6
units 3-6

signals
inputs 2-3
outputs 2-3
types 2-3

sim function
options 4-7
simulations 4-6

simulations
closed-loop 3-16
conditions 3-12
linear 3-12
nonlinear 3-66
open loop 3-16
options 4-7
sim function 4-6
starting in design tool 3-14
toolbar icon 3-13
See also scenarios

soft constraints 3-42
ss function 2-6
state estimation 3-34
SysID (System Identification)

See system identification
system identification

example 2-14
model conversion 2-15
noise inputs 2-16
step response 2-17

T
tf function 2-4
transfer functions

specification 2-4

tree
navigation 3-7

types
specification using design tool 3-6

U
units

specification 3-6
unmeasured outputs

definition 2-3

V
views

constraint softening 3-43
controller settings 3-20
controllers 3-9
plant models 3-8
scenarios 3-10
signal properties 3-7
See also design tool

W
weights

inputs 3-26
move suppression 3-25
output 3-24
rate 3-25
setpoint tracking 3-24
tuning 3-22

Z
zpk function 2-5

	Introduction
	What Is the Model Predictive Control Toolbox?
	Using the Documentation
	Related Products

	Bibliography

	Building Models
	Overview
	Plant Model
	Plant Inputs and Outputs

	Linear, Time Invariant (LTI) Models
	Transfer Function Format
	Zero/Pole/Gain Format
	State-Space Format
	LTI Object Properties
	Multiinput Multioutput (MIMO) Plants
	LTI Model Characteristics

	System Identification Toolbox Models
	System Identification Model Definition Example
	Converting a System Identification Toolbox Model to an LTI Object
	Step-Response Models

	Using Simulink to Develop LTI Models
	Linearization Using Simulink Control Design
	Linearization Using Simulink Functions

	Bibliography

	The Design Tool
	Introduction
	Starting the Design Tool
	Loading a Plant Model
	Navigation Using the Tree View

	Linear Simulations
	Defining Simulation Conditions
	Running a Simulation
	Open-Loop Simulations

	Changing Controller Settings
	Model and Horizons
	Weight Tuning
	Blocking
	Defining Manipulated Variable Constraints
	Disturbance Modeling and Estimation

	Defining Soft Output Constraints
	Robustness Testing
	Plant Model Perturbation
	Simulation Tests

	Plant Models with Delays
	Importing the Plant Model
	Specifying Controller Horizons

	Nonsquare Plants
	More Outputs Than Manipulated Variables
	More Manipulated Variables Than Outputs

	Nonlinear Plants
	The MPC Controller Block
	Initiating the Controller Design
	Validating the Linearized Model
	Modifying the Linearized Model
	Linear Simulation Tests
	Nonlinear Simulation Tests
	Modifying the Controller Using the Design Tool
	Exiting the Design Tool

	Saving Your Work
	Exporting a Controller
	Saving a Project

	Loading Your Saved Work

	Using Model Predictive Control Toolbox Functions
	Controller Definition
	Creating a Controller Object
	Viewing and Altering Controller Properties

	Linear Simulations
	Using the sim Function
	Saving Calculated Results
	Simulation Options

	Simulations Involving Nonlinear Plants
	A Nonlinear CSTR Application
	Example Code for Successive Linearization
	CSTR Results and Discussion

	Analysis Tools
	Steady-State Gain Computation
	Controller Extraction

	Bibliography

	Index

